In this paper, we develop a nested chi-squared likelihood ratio test for selecting among shrinkage-regularized covariance estimators for background modeling in hyperspectral imagery. Critical to many target and anomaly detection algorithms is the modeling and estimation of the underlying background signal present in the data. This is especially important in hyperspectral imagery, wherein the signals of interest often represent only a small fraction of the observed variance, for example when targets of interest are subpixel. This background is often modeled by a local or global multivariate Gaussian distribution, which necessitates estimating a covariance matrix. Maximum likelihood estimation of this matrix often overfits the available data, particularly in high dimensional settings such as hyperspectral imagery, yielding subpar detection results. Instead, shrinkage estimators are often used to regularize the estimate. Shrinkage estimators linearly combine the overfit covariance with an underfit shrinkage target, thereby producing a well-fit estimator. These estimators introduce a shrinkage parameter, which controls the relative weighting between the covariance and shrinkage target. There have been many proposed methods for setting this parameter, but comparing these methods and shrinkage values is often performed with a cross-validation procedure, which can be computationally expensive and highly sample inefficient. Drawing from Bayesian regression methods, we compute the degrees of freedom of a covariance estimate using eigenvalue thresholding and employ a nested chi-squared likelihood ratio test for comparing estimators. This likelihood ratio test requires no cross-validation procedure and enables direct comparison of different shrinkage estimates, which is computationally efficient.
Identification of vegetation species and type is important in many chemical, biological, radiological, nuclear, and explosive sensing applications. For instance, emergence of non-climax species in an area may be indicative of anthropogenic activity which can complement prompt signatures for underground nuclear explosion detection and localization. To explore signatures of underground nuclear explosions, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of 274 visible and near-infrared wavebands over 4.3 km2 of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. Previous work has shown that a vegetation spectral derivative can be more indicative of species than the measured value of each band. However, applying a spectral derivative amplifies any noise in the spectrum and reduces the benefit of the derivative analysis. Fitting the spectra with a polynomial can provide the slope information (derivative) without amplifying noise. In this work, we simultaneously capture slope and curvature information and reduce the dimensionality of remotely sensed hyperspectral imaging data. This is performed by employing a 2nd order polynomial fit across spectral bands of interest. We then compare the classification accuracy of a support vector machine classifier fit to the polynomial dimensionality reduction technique and the same support vector machine fit to the same number of components from principle component analysis.
There are several factors that should be considered for robust terrain classification. We address the issue of high pixel-wise variability within terrain classes from remote sensing modalities, when the spatial resolution is less than one meter. Our proposed method segments an image into superpixels, makes terrain classification decisions on the pixels within each superpixel using the probabilistic feature fusion (PFF) classifier, then makes a superpixel-level terrain classification decision by the majority vote of the pixels within the superpixel. We show that this method leads to improved terrain classification decisions. We demonstrate our method on optical, hyperspectral, and polarimetric synthetic aperture radar data.
Spectral matched filtering and its variants (e.g. Adaptive Coherence Estimator or ACE) rely on strong assumptions about target and background distributions. For instance, ACE assumes a Gaussian distribution of background and additive target model. In practice, natural spectral variation, due to effects such as material Bidirectional Reflectance Distribution Function, non-linear mixing with surrounding materials, or material impurities, degrade the performance of matched filter techniques and require an ever-increasing library of target templates measured under different conditions. In this work, we employ the contrastive loss function and paired neural networks to create data-driven target detectors that do not rely on strong assumptions about target and background distribution. Furthermore, by matching spectra to templates in a highly nonlinear fashion via neural networks, our target detectors exhibit improved performance and greater resiliency to natural spectral variation; this performance improvement comes with no increase in target template library size. We evaluate and compare our paired neural network detector to matched filter-based target detectors on a synthetic hyperspectral scene and the well-known Indian Pines AVIRIS hyperspectral image.
The detection, location, and identification of suspected underground nuclear explosions (UNEs) are global security priorities that rely on integrated analysis of multiple data modalities for uncertainty reduction in event analysis. Vegetation disturbances may provide complementary signatures that can confirm or build on the observables produced by prompt sensing techniques such as seismic or radionuclide monitoring networks. For instance, the emergence of non-native species in an area may be indicative of anthropogenic activity or changes in vegetation health may reflect changes in the site conditions resulting from an underground explosion. Previously, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of visible and near-infrared wavebands over 4.3 km2 of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. In this work, we employ various spectral detection and classification algorithms to identify and map vegetation species in an area of interest containing the legacy test site. We employed a frequentist framework for fusing multiple spectral detections across various reference spectra captured at different times and sampled from multiple locations. The spatial distribution of vegetation species is compared to the location of the underground nuclear explosion. We find a difference in species abundance within a 130 m radius of the center of the test site.
Optical remote sensing has become a valuable tool in many application spaces because it can be unobtrusive, search large areas efficiently, and is increasingly accessible through commercially available products and systems. In the application space of chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing, optical remote sensing can be an especially valuable tool because it enables data to be collected from a safe standoff distance. Data products and results from remote sensing collections can be combined with results from other methods to offer an integrated understanding of the nature of activities in an area of interest and may be used to inform in-situ verification techniques. This work will overview several independent research efforts focused on developing and leveraging spectral and polarimetric sensing techniques for CBRNE applications, including system development efforts, field deployment campaigns, and data exploitation and analysis results. While this body of work has primarily focused on the application spaces of chemical and underground nuclear explosion detection and characterization, the developed tools and techniques may have applicability to the broader CBRNE domain.
Hyperspectral and multispectral imagers have been developed and deployed on satellite and manned aerial platforms for decades and have been used to produce spectrally resolved reflectance and other radiometric products. Similarly, light detection and ranging, or LIDAR, systems are regularly deployed from manned aerial platforms to produce a variety of products, including digital elevation models. While both types of systems have demonstrated impressive capabilities from these conventional platforms, for some applications it is desirable to have higher spatial resolution and more deployment flexibility than satellite or manned aerial platforms can offer. Commercially available unmanned aerial systems, or UAS, have recently emerged as an alternative platform for deploying optical imaging and detection systems, including spectral imagers and high resolution cameras. By enabling deployments in rugged terrain, collections at low altitudes, and flight durations of several hours, UAS offer the opportunity to obtain high spatial resolution products over multiple square kilometers in remote locations. Taking advantage of this emerging capability, our team recently deployed a commercial UAS to collect hyperspectral imagery, RGB imagery, and photogrammetry products at a legacy underground nuclear explosion test site and its surrounds. Ground based point spectrometer data collected over the same area serves as ground truth for the airborne results. The collected data is being used to map the site and evaluate the utility of optical remote sensing techniques for measuring signatures of interest, such as the mineralogy, anthropogenic objects, and vegetative health. This work will overview our test campaign, our results to date, and our plans for future work.
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.