In space applications, more and more organic polymers (adhesives, resins, paints and packaging of electronic devices) are used for their performance, their cost and their flexibility for the design of future satellites. This is especially true in the New Space era, using Off-The-Shelf devices with rarely well-known materials. Outgassed products of these materials under vacuum is a major cause of dramatic flux losses for contaminated optical devices, especially in the UV range. Thus, material outgassing must be studied and better controlled, during all the phases of satellite integration. Fluorescence hyperspectral imaging is a powerful technique for both locating and analyzing materials: their fluorescence spectra can be interpreted as a signature of their physicochemical composition. However, common commercial hyperspectral instruments do not meet the specifications required for such applications: very high sensitivity (SNR < 10000), wide spectral band (ideally 250-1000 nm), integrated multi-wavelength UV excitation and spectral range resolution of about 3 nm. In addition, classical optical design with diopters has to be avoided to prevent chromaticism, which is not compatible with wide spectral bandwidth, especially in UV range. These constraints led us to develop a new dedicated optical design, with the specificity of being catoptric on axis. Therefore, we built a first transportable instrument. In this paper, we present the evaluation of the characteristics of this instrument, its real performance and examples of measurements on flight models. A new version has been designed, using laser sources to limit exposure time of examined materials as much as possible, as they may be degraded under UV light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.