Silicon photonics has been largely developed as a platform to address the future challenges in several applications including datacom, sensing or optical communications, among others. However, the properties of silicon itself is not enough to overcome all limitations in terms of speed, power consumption and scalability. New strategies have then been encouraged based on the hybrid integration of new materials in the silicon photonics platform. In this paper, we will introduce the recent advances in the hybrid integration of doped crystalline-oxides on silicon and silicon nitride waveguides. Especially, Yttria-stabilized zirconia (YSZ) with a lattice parameter compatible with the silicon lattice has been considered because it exhibits promising linear and nonlinear optical properties: low propagation loss, no two photon absorption (TPA) due to its large bandgap energy, a large transparency window from the ultraviolet to the mid-infrared and a good Kerr effect. Furthermore, YSZ can be doped with many dopants to develop active photonic devices with strong second- and third-order nonlinearities and light emission. We have recently demonstrated propagation loss in YSZ waveguides as low as 2dB/cm at a wavelength of 1380 nm, a nonlinear refractive index (Kerr effect) comparable with the SiN coefficient and light amplification in Er3+ doped YSZ on SiN waveguides. The recent results are very promising to pave the way for the development of low cost and low power consumption devices.
Silicon nanophotonics represents a scalable route to deploy complex optical integrated circuits for multifold applications, markets, and end-users. Most recently, applications such as optical communications and interconnects, sensing, as well as quantum-based technologies, among others, present additional opportunities for integrated silicon nanophotonics to expand its frontiers from laboratories to industrial product development. Within a wide set of functionalities that silicon nanophotonic chips can afford, the availability of low-loss optical input/output interfaces has been regarded as a major practical obstacle that hampers long-term success of integrated photonic platforms. Indeed, fiber-chip interfaces based on diffraction gratings are an attractive solution to resonantly couple the light between planar waveguide circuits and standard single-mode optical fibers. Surface grating couplers provide much more alignment tolerance in fiber attach compared with most conventional edge-coupled alternatives, while retaining the much-needed control of the fiber placement on the chip surface and wafer-level-test capability that the in-plane convertors lack. Here, we report on our recent advances in the development of high-performance fiber-chip grating couplers that exploit the blazing effect. This is achieved with well-established dual-etch processing in interleaved teeth-trench arrangements or using L-shaped grating-teeth-profile geometries. The first demonstration of the L-shaped-based grating coupler yielded a coupling loss of -2.7 dB, seamlessly fabricated into a 300-mm foundry manufacturing process using 193-nm deep-ultraviolet stepper lithography. Moreover, silicon metamaterial L-shaped fiber couplers may promote robust sub-decibel coupling of light, reaching a simulated coupling loss of -0.25 dB, while featuring device layouts (>120 nm) compatible with lithographic technologies in silicon semiconductor foundries.
The strong evolution of silicon photonics towards very low power consumption circuits leads to the development of new strategies for photonic devices, especially for power-hungry components such as optical modulators. One strategy is to use Pockels effect in Si waveguides. However, bulk Si is a centrosymmetric semiconductor, which cannot exhibit any second order optical nonlinearities. Nonetheless, under a strain gradient, generated by depositing a stressed layer on Si waveguides, this restriction vanishes. In our work, we experimentally demonstrated a Pockels effect based electro-optic modulation at high frequency (> 5GHz) using a strained silicon Mach-Zehnder modulator.
Sub-wavelength gratings, segmented resonant-less structures with geometries featuring scales considerably smaller than the wavelength of light, have enabled an attractive technological concept to locally control light guiding properties in planar silicon chip architectures. This concept has allowed for additional degrees of freedom to tailor effective mode index, modal confinement, waveguide dispersion, as well as anisotropy, thereby providing a vital route towards high performing devices with engineered optical properties. Sub-wavelength integrated nanophotonics has opened up new horizons for realization of key building components that afford outstanding device performances, typically beyond those achieved by conventional design strategies, yet favorably benefiting from the sub-100-nm pattern resolution of established semiconductor manufacturing tools in nanophotonic foundries. The distinctive features of sub-wavelength grating structures are considered essential for future generation of chip-scale applications in optical communications and interconnects, biomedicine, as well as quantum-based technologies. In this work, we report recent advances in the development of high-performance on-chip nanophotonic waveguides and devices engineered with the sub-wavelength grating metamaterial structures. In particular, we discuss recent achievements of low-loss waveguides with controlled chromatic dispersion, high-efficiency fiber-to-chip surface grating couplers, micro-ring resonators, and grating-assisted waveguide filters, implemented on the mature silicon-on-insulator technology.
New optical materials for hybrid photonic integration on silicon platform have become a hot research topic aiming at providing additional functionalities. In this regard, functional oxides are a very interesting class of materials due to their singular properties. Material engineering is commonly employed to tune and manipulate such properties at will, thus being functional oxides often used to build active reconfigurable elements in complex systems. Transparent oxides with moderate refractive indexes are targeted for hybrid integration due to the rewarding benefits envisioned. Yttria-Stabilized Zirconia (YSZ) is a chemically stable oxide1 with a transparency range that spans from the visible to the mid-IR2, with a refractive index around 2.1, which makes this functional oxide interesting for the development of low-loss waveguides when grown over a low contrast substrate. While these optical properties are very interesting for various applications, including on-chip optical communications and sensing, YSZ has remained almost unexplored in photonics up to now. Nevertheless, this complex functional oxide shows interesting optical properties such as low-moderate propagation losses of 2 dB/cm at telecom wavelengths3.
In our work, we explore the deposition of erbium doped YSZ by pulsed layer deposition (PLD) on a multilayer approach providing outstanding luminescence in correspondence with C-band of telecommunication window (λ=1530 nm) and in the visible range by means of up-conversion processes. The optical properties of active layers of Er-doped YSZ grown on waveguides in different platforms and under resonant pumping will be discussed in this paper, as well as their propagation losses. Based on the preliminary study of these active hybrid systems, we envision light amplification functionalities based on rare-earth doped functional oxides.
Silicon photonics is being considered as the future photonic platform for low power consumption optical communications. However, Silicon is a centrosymmetric semiconductor, which cannot exhibit any second order optical nonlinearities, like second harmonic generation nor the linear electro-optic effect (i.e. Pockels effect). Nonetheless, by means of strain gradients, generated by depositing a stressed layer (typically SiN) on silicon waveguides, this restriction vanishe. Hence, for years, many attempts on characterizing the second order nonlinear susceptibility tensor through Pockels effect have been performed. However, due to the semiconductor nature of silicon, its analysis has been wrongly carried out. Indeed, carriers in Si, at the Si/SiN interface and in SiN have a screening effect when performing electro-optic modulation, which have led to overestimations of the second order nonlinear susceptibility and eventually rose a controversy on the real existence of Pockels effect in strained silicon waveguides. Here, we report on unambiguous experimental characterization of Pockels effect in the microwave domain, by taking advantage of the inherent limitation of carrier effect in high frequency range. Recent results on high-speed measurements will be presented and discussed. Both charge effects and Pockels effect induced under an electric field will be also analysed.
Functional oxides are a very interesting class of materials due to their singular properties. Material engineering is commonly employed to tune and manipulate such properties at will, thus being functional oxides often used to build active reconfigurable elements in complex systems. In this regard, Yttria-Stabilized Zirconia (YSZ) stands as an interesting material since it has stable thermal and chemical properties and offers a wide transparency range from the visible to the mid-IR wavelength range. Moreover, it has a moderate refractive index of 2.1 which provides a good potential for the development of low-loss waveguides when grown over a low contrast substrate. While these optical properties are very interesting for various applications, including on-chip optical communications and sensing, YSZ has remained almost unexplored in photonics. In this regard, we recently demonstrated YSZ waveguides with propagation losses as low as 2 dB/cm at a wavelength of 1380 nm3. Based on the encouraging preliminary results, we have recently explored the possibility to introduce active rare-earth dopants into YSZ waveguides to demonstrate on-chip optical amplifiers based on YSZ. This work explores the introduction of Er3+ ions using a multilayer approach deposited by pulsed laser deposition (PLD) technique, providing outstanding luminescence around λ = 1.55 μm, in correspondence with C-band of telecommunications. Such active layers have been grown onto different platforms, including SiNx and sapphire. The optical properties of Er-doped YSZ waveguides under resonant pumping and its propagation losses will be discussed in this paper. These results pave the way towards the implementation of new rare-earth-doped functional oxides into hybrid photonic platforms in a customized and versatile manner, adding novel light amplification functionalities.
With the fast growing demand of data, current chip-scale communication systems based on electrical links suffer rate limitations and high power consumptions to address these new requirements. In this context, Silicon Photonics has proven to be a viable alternative by replacing electronic links with optical ones while taking advantage of the well-established CMOS foundries techniques to reduce fabrication costs. However, silicon, in spite of being an excellent material to guide light, its centrosymmetry prevents second order nonlinear effects to exist, such as Pockels effect an electro-optic effect extensively used in high speed and low power consumption data transmission. Nevertheless, straining silicon by means of stressed thin films allows breaking the crystal symmetry and eventually enhancing Pockels effect. However the semiconductor nature of silicon makes the analysis of Pockels effect a challenging task because free carriers have a direct impact, through plasma dispersion effect, on its efficiency, which in turn complicates the estimation of the second order susceptibility necessary for further optimizations. However, this analysis is more relaxed working in high-speed regime because of the frequency limitation of free carriers-based modulation.
In this work, we report experimental results on the modulation characteristics based on Mach-Zehnder interferometers strained by silicon nitride. We demonstrated high speed Pockels-based optical modulation up to 25 GHz in the C-band.
Optical input/output interfaces between silicon-on-insulator (SOI) waveguides and optical fibers, allowing robust, costeffective and low-loss coupling of light, are fundamental functional elements in the library of silicon photonic devices. Surface grating couplers are particularly desirable as they allow wafer-scale device testing, yield improved alignment tolerances, and are compatible with state-of-the-art integration and packaging technologies. While several factors jointly contribute to the coupler performance, the grating directionality is a critical parameter for high-efficiency fiber-chip coupling. To address this issue, conventional coupler designs typically call upon comparatively complex architectures to improve light coupling efficiency. Increasing the intrinsic directionality of the grating by exploiting the blazing effects is another promising solution. In this paper, we report on our recent advances in development of low-loss grating couplers that afford excellent directionality, close to the theoretical limit of 100%. In particular, we demonstrate, by theory and experiments, several implementations of blazed grating couplers with layout features that are compatible with deepultraviolet (deep-UV) optical lithography. Devices can be advantageously implemented on various photonic platforms, including industry-specific and the offerings of publicly accessible foundries. The first experimental realizations of uniform deep-UV-compatible couplers yield losses of -2.7 dB at 1.55-µm and a 3-dB bandwidth of 62 nm. A subwavelength-index-engineered impedance matching transition is used to reduce back-reflections down to -20 dB.
Silicon photonics is being considered as the future photonic platform for low power consumption optical communications. However, silicon is a centrosymmetric crystal, i.e. silicon doesn’t have Pockels effect. Nevertheless, breaking the crystal symmetry of silicon can be used to overcome this limitation. In this work, the crystal modification is achieved by depositing a SiN high-stress overlayer.
Recent results on high-speed measurements will be presented and discussed. Both charge effects and Pockels effect induced under an electric field will be also analyzed.
Fiber-chip grating couplers providing high-efficiency, robustness and cost-effectivity are recognized as a key building block for large-volume photonic applications. However, the efficiency of silicon-on-insulator (SOI) grating couplers is limited by the mismatch between the beam diffracted by the grating and the fiber mode, back-reflections at the grating-to-waveguide interface, and the power radiated towards the substrate. While the first two limitations can be overcome by grating apodization, the limited diffraction efficiency (directionality) towards the fiber remains a challenge. Typically, grating directionality is optimized by backside metallization, distributed Bragg mirrors, multi-level grating architectures or non-standard etching depths. However, these approaches yield comparatively complex structures, which in turn, come with the expense of extra fabrication costs, hindering the mass-scale development.
Alternatively, the blazing effect has been exploited to provide remarkably high directionalities, relying on standard deep and shallow etch depths. Here, we report on the first experimental demonstration of an ultra-directional L-shaped fiber-chip grating coupler fabricated on 300 mm SOI wafer using 193-nm deep-ultraviolet lithography. The grating coupler is realized on a 300-nm-thick Si layer, combining standard full (300 nm) and shallow (150 nm) etch steps in an L-shaped arrangement. This approach yields a remarkably high grating directionality up to 98%. A single-step subwavelength-engineered transition provides an eight-fold reduction of the reflectivity, from ~8% to ~1%. We experimentally demonstrate a coupling efficiency of -2.7 dB, with a 3-dB bandwidth of 62 nm.
These results open a new route towards exploiting the blazing effect for the large-volume realization of high-efficiency fiber-chip grating couplers in the low-cost 300 mm SOI photonic platform.
Silicon photonics has generated a strong interest in recent years, mainly for optical communications and optical interconnects in CMOS circuits. The main motivations for silicon photonics are the reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip by combining photonics and electronics, along with a strong reduction of power consumption. However, one of the constraints of silicon as an active photonic material is its vanishing second order optical susceptibility, the so called χ(2) , due to the centrosymmety of the silicon crystal. To overcome this limitation, strain has been used as a way to deform the crystal and destroy the centrosymmetry which inhibits χ(2). The paper presents the recent advances in the development of second-order nonlinearities including discussions from fundamental origin of Pockels effect in silicon until its implementation in a real device. Carrier effects induced by an electric field leading to an electro-optics behavior will also be discussed.
With the increasing demand of data, current chip-scale communication systems based on metallic interconnects suffer rate limitations and power consumptions. In this context, Silicon photonics has emerged as an alternative by replacing the classical copper interconnects with silicon waveguides while taking advantage of the well-established CMOS foundries techniques to reduce fabrication costs. Silicon is now considered as an excellent candidate for the development of integrated optical functionalities including waveguiding structures, modulators, switches… One of the main challenges of silicon photonics is to reduce the power consumption and the swing voltage of optical silicon modulators while increasing the data rate speed. However, silicon is a centrosymmetric crystal, vanishing the second order nonlinear effect i.e. Pockels effect which is intrinsically a high speed effect. To overcome this limitation, mechanical stresses on silicon to break the crystal symmetry can be used depositing a strained overlayer.
In this work, we have studied the effect of the stress layer in the modulation characteristics based on Mach-Zehnder interferometers. The deposition of silicon nitride as the stress layer and its optimization to induce the maximum effect will be presented.
The purpose of this work is to explore an alternative approach for high speed and low power consumption optical
modulation based on the use of the Pockels effect in silicon. Unfortunately, silicon is a centro-symmetric crystal leading
to a vanishing of the second order nonlinear coefficient, i.e. no Pockels effect. To overcome this limitation, on possibility
would be to break the crystal symmetry by straining the silicon lattice with the epitaxial growth of crystalline functional
oxides. Indeed, the induced strain due to lattice parameter mismatch and the difference in the thermal expansion
coefficients between oxides and silicon are strong and may induce strong strain into silicon. Furthermore, functional
oxides can exhibit very interesting multiferroicity and piezoelectricity properties that pave the way to a new route to
implement silicon photonic circuits with unprecedented functionalities.
Silicon photonics is being considered as the future photonic platform for low power consumption optical communications. However, silicon is a centrosymmetric crystal, i.e. silicon doesn’t have Pockels effect. Nevertheless, breaking the crystal symmetry of silicon can be used to overcome this limitation. This crystal modification is achieved by depositing a SiN high-stress overlayer.
In this work, we present recent developments on the subject taking into account parasitic effects including plasma dispersion effect and fixed charge effect under an electric field. We theoretically and experimentally investigated Pockels effect in silicon waveguides and last results will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.