This paper deals with problematic of Free Space Optical (FSO) Links. The theoretical part describes the effects of atmospheric transmission environment on these FSO connections. The practical part is focused on the creation of an appropriate experimental workplace for turbulences simulation (mechanical and thermal turbulences), fog effects and subsequent measurement of these effects. For definition how big impact these effects on the FSO system have is used the statistical analysis and simulation software Optiwave. Overall there were tested three optical light sources operating at wavelengths of 632.8 nm, 850 nm and 1550 nm respectively. Influences of simulated atmospheric effects on the signal attenuation were observed. Within the frame of simulation in Optiwave software there were studied influences of attenuation on given wavelengths in form of FSO link transmission parameters degradation. Also for the purposes of real measurements it was necessary to fabricate an experimental box. This box was constructed with sizes of 2.5 and 5 meters and was used for simulation of atmospheric environment.
In this article the author’s team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.
There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.
In this article the author’s team deals with problems of modulation formats for Free Space Optical (FSO) Communications. FSO communications have high bandwidth, low signal attenuation, quick installation, security, unlicensed band and low cost. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation the received power signal, influence turbulence). Here will be dealing modulation schemes OOK (On-Off keying) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). In which will studied their characteristic and effect of atmospheric influence on the received signal. This results in decreased Eye-Diagram, Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER). To evaluate the modulation formats in atmospheric turbulence is used simulation box with heat and wind sources.
The atmosphere is unstable and unpredictable environment, where are continual changes of the air refractive index. These changes cause fluctuation of optical power at the receiver site. The prediction of behavior of the atmosphere and effect of this behavior on the FSO link is very complicated or even impossible. Aim of this article is focused on statistical analysis of measured level signal RSSI of the FSO link and atmospheric properties measured by hydro-meteorological station. For measured data the statistical analysis tools were used. Next part of article is focused on determination of the linear regression model to calculate level of RSSI depending on the atmospheric properties. Two empirical equations are result for day and night time. These equations describe behavior of signal RSSI in 30 days interval. Finally, comparison of the obtained mathematical model with real measured data of RSSI was introduced for one week before and one week after the analyzed time interval.
This article is dealing with evaluation of air turbulences in uence on the laser beam in the simulation box with regards to change of beam polarization state. For measurement the laser optical source LDM1550 operating at 1550 nm and polarimeter PAX5710 were used. The laser source was placed in front of simulation box that served for generation of stable turbulent environment. The simulation of turbulent environment was generated by high-speed ventilators PMD1212PMB1-A. The thermal turbulences were created by Empire CTH-5000 and Solac TH 8325 heaters. All heaters were placed along the side of simulation box. With the help of polarimeter and detector PAN5710IR3 were then subsequently recorded changes of polarization state of the optical beam with regards to changes of turbulence condition within the box. The results are then discussed and interpreted with the help of statistic methods in the end of the article.
This paper is dealing with problems and possibilities of RFoG (Radio Frequency over Glass) technology deployment into the new generation optical access networks. Passive optical networks (PON) offer, except high bit rate, also a very wide range of applicability for various traffic data services. These services can be combined with different transmission technologies. The one of the most important needs upon these networks is also their backward compatibility with older analog technologies. The experimental part is devoted to broadcasting of RFoG through the designed PON networks and experimental measurements, using objective methods. The conclusion of this article is focused on the evaluation of individual measurements and considering of the feasibility of RFoG technology deployment in practical utilization.
Nowadays, the conventional light sources are replaced progressively evolving LED (Light Emitting Diode) for their deficient properties. This technology recorded dynamic growth mainly due to effective research in increasing power density and choice the color shade on good color rendering CRI (Color Rendering Index). This extending the zone of used LEDs. Development of lighting technology by means of white power LEDs provided impulse to the idea of the development of optical wireless data networks based on optical radiation in the visible region of the spectrum VLC (Visible Light Communications). In the last years being recorded a turnover of research from transmission of information via optical fiber to the transmission of information through wireless networks. At the same time the concept of information transmission by indirect sight between transmitter and receiver NLOS (Non Line of Sight) is changing. Line of research focuses mainly on the direct line of sight LOS (Line of Sight). This is due to the development of the semiconductor lighting through the white power LED. This is connected with the idea of using them as a transmitter for communication purposes. This article deals with software design of optical link for indoor wireless optical network in LightTools software. Optimal optical source was designed for communication using LED as the first. For the proposed type of LEDs sources were used different shapes and distances distribution between LEDs in a single cell at the designed optical transmitter.
During recent years, there has been rapid development in optical networks. This includes not only fiber optical networks but also free space optical networks. The free space optical networks can be divided into indoor and outdoor ones. The indoor free space optical networks have been experiencing dramatic progress in the last years, allowed by the newest IEEE norm 802.15.7, which enabled development of different types of transmitter receivers, modulation formats, etc. The team of authors is dealing with software design of segment optical transmitters for an indoor free space optical network based on the multi-mode optical 50/125 or 62.5/125 μm fiber. Simulated data are then evaluated from the point of view of optical intensity uniform distribution and space spot light size radiating from segment optical transmitter.
This paper is dealing with design of new type of optical transmitter that is composed of bundle of optical fibers. For design purposes multimode fibers with different dimensions 50/125 and 62.5/125 µm were used. Software designs consisting of 3 or 5 optical fibers in bundle were subsequently evaluated from the point of view of uniform optical intensity distribution and dimensions of light pattern in space.
The new dynamic direction of wireless networks development is based on the idea of networks utilizing the optical radiation in the visible spectrum VLC (Visible Light Communications). The impulse of this development direction was improvement in the semiconductor lighting technologies, namely the white power LEDs (Light Emitting Diode). These types of wireless networks are denoted as the optical wireless networks for indoor spaces utilizing optical radiation in the visible spectrum. The paper deals with the issue of deployment of multi-state modulations into the indoor visible light communications in LOS (Line of Sight) configuration. The first part of the paper focuses on design of modulation element (SMD LED matrix 3 × 3) and problems connected to deployment of multi-state modulation M-QAM (subcarrier intensity modulation) through this modulation element into the indoor visible light communications (MER). The second part deals with the irradiation distribution in dark room in comparison with real room during used multi-state modulation scheme in both simulation and real measurement.
KEYWORDS: Optical amplifiers, WDM-PON, Raman spectroscopy, Signal to noise ratio, Attenuators, Fiber amplifiers, Networks, L band, Signal attenuation, Optical networks
This article is dealing with simulation of deployment of different optical amplifier types in different positions (power amplifier, in-line amplifier, preamplifier) in the WDM-PON network. For simulation available bit rates per chanell were taken in to account, specifically 125 Mbps, 1.25 Gbps and 2.5 Gbps. Optical amplifiers implementation than has influence on possible transmission distance for WDM-PON network. In simulated topology parameters as bit error ratio, attenuation, Q-factor, OSNR, etc. were observed. The whole designed WDM-PON network topology was based on real device Ericsson-LG EAST1100 available on the market. Necessary parameters and data for simulation were obtained from datasheets and real measurements so that the simulation resemble to the real measured results as much as possible.
There is an increasing pressure nowadays on the efficient use of existing ICT infrastructure in order to provide the latest services for corporate customers or end users. With the increase in number of services, requirements for optical networks of all hierarchies are increasing as well. This increase in the requirements, however, involves risks which must be faced by Internet service providers. These include the maximum use of spectral range, bandwidth and reachable distance, suppression of dispersion effect, route planning efficiency, CAPEX and OPEX costs management, or successful combination of technologies of deployed networks. The aim of this article is to present the problems associated with interconnection of WDM-PON and ver.2 EPON (IEEE 802.3ah standard). The entire simulation is based on real parameters, which were provided by the manufacturers of the technologies and then measured in the laboratory. Then we were able to perform simulations based on more realistic features of these technologies.
The importance and using of power LED diodes increases. White power LED diodes cover a wide spectral range and they are usable in many applications. These LED diodes work in optical systems, the original spectrum of a white power LED diode can be changed by using all kinds of optical elements. This article describes a pursuit of the most faithful recovery of the original spectrum of a white power LED diode. The evaluative criterion is the value of the Correlated Color Temperature of the original white power LED diode compared with the value of the Correlated Color Temperature of the recovered spectrum. This recovery can be used in communication engineering.
This article is dealing with problems connected with coupling conditions for different types of quasi-single mode optical fibers with various refractive indices of core and cladding. The description of repeatable coupling conditions measurement and measurement of optical beam by the slit method is also presented. The heads of quasi-single mode optical fibers were measured and observed with the help of CCD camera and microscope. These instruments allow measuring of optical power redistribution in modal field.
A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).
In this article are presented results from application of fiber optical DTS system within long term research of temperature energy accumulation in Paskov rock massif. In this area was established special measuring station for that purpose, because rock massif in Paskov area has ideal properties for temperature changes measurement. The twelve geothermal boreholes were drilled during this research, which were then used for rock massif heating by Thermal Response Test device. With the help of DTS system was observed how the temperature distribution and penetration in between boreholes in rock massif is. Thanks to the DTS system we were able to determine the Thermal Response Test device heating power influence on the nearest monitoring boreholes.
Nowadays, it is obvious that the access networks will be build up from optical networks. With that are linked also optical components. These components are mostly passive connectors and splitters. In terms of the attenuation budget of the entire network, especially the splitters are very important elements in planning of the networks. The change in attenuation of these elements can lead to failure of the entire network. This article is focused to the issue of measurement of attenuation changes of the fiber optic splitters caused by the temperature with different dividing ratios and number of branches. The article describes the attenuation changes with temperature for commercially available single-mode fiber optical splitters and its capabilities for internal use. Effects of temperature were simulated in specialized chamber, which can reach the temperatures of value about 300 °C. Each fiber splitter was measured from all directions and several times in order to construct the statistical evaluation of the measured and calculated data. The measurement content also included determination of attenuation, crosstalk between the branches, insertion loss and total loss.
The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.
The free space optic links are used in places, where it is very difficult to use optical fiber links. The advantages of free space optic link are a great bit rate, easy and fast installation, unlicensed frequency band. The greatest disadvantage is transmission medium, which it uses in case of FSO link, the atmosphere. The worst influence on FSO link is caused by atmospherical effect called fog. This article deals with the study of fog influence on FSO link and its bit error ratio. The real measurement of BER with artificial generated fog and FSO link was performed. The measurement was done in laboratory conditions. The results are presented in this article.
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor’s response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
Nowadays, in the field of communications systems radio transmission frequencies are dominant inside buildings. Due to the increasing of large number of users and devices, that use these frequencies, there is danger of accruing interferences and reducing the transmission performance. Therefore, indoor wireless optical systems are beginning to use as an alternative solution. Indoor wireless optical systems can use for communication direct and reflected light rays. This article deals with the measurement of optical power distribution in the model dark room. As a light source we use white power LEDs located on the ceiling of the room. The measurement of the optical power distribution was performed in dark room, which was specially constructed for this purpose. This room was also modelled in LightTools software that allows simulate a real measurement. This article compares the results of the measurement and the simulation.
Optical fibreless data networks P2P offer fast data transmissions with big transmittance from 1- 10 Gbps on a distance of 1- 6 km. Perfections of such networks are especially flexibility, rapid creation of communications. Sensitivity to atmospheric influences, necessity of light on sight belongs to disadvantages. Transmission through atmosphere be characterized by non-stationarity, inhomogeneity, the influences have random character. It means immediately that it is possible only with difficulty to project conclusions concerning to the measurement on one line upon fiberless line in another position. Contribution tackles a question of forming of the artificial hazy atmospheres, finding the statistical parameters of artificially created foggy atmospheres that could be reproduced to real environment. This work describes created laboratory apparatus powered with fog generator, heat source and ventilating fans, which allow in a controlled way to change the optical transmission inside the bounded space. Laser diode radiation at wavelength of 850 nm is transmitted into created space like this which is scanned with optical power meter after passing of artificially created turbulent vaporous environment. Changes in intensity of the passed lights are captured; the mean value and maximum deviation from the mean value are computed. In this way it is possible to change the reached specific attenuation in dB/km. Owing to turbulences it happens to deviations from the mean value, these abnormalities are characterized by the distribution function that describes the size of turbulences in time. By the help of ergodic theorem then it is possible to deduce that the distribution function of the foggy turbulences gained at continuous time evaluation has same history like the distribution function gained behind the same conditions in the setup in other times. It holds as well that these distribution functions are the same for variety of points in experimental space, provided there are well - kept the same conditions of turbulence creations. Contribution shows the experimental values, shapes of distribution functions, their influence on attenuation of fiberless communication lines and on achieved the transmission BER. At the present time the verification of conclusions is performed from the experimental model on outdoor connecting link working upon the distance of 1,3 km at the transmission rate of 1,25 Gbps.
The team of authors was concerned in the development and construction of low-cost free space optical link and
simulations of the influence of atmospheric conditions on this link. The article contains description of electronic design
and attention is also dedicated to simulations of atmospheric conditions. Gradually, the most frequently occurring
atmospheric conditions and their impact on the available bit rates were tested. An integral part of the article is calculation
of the energy balance of the whole link. At the end are shown images of the measured eye diagrams and samples of
measured distribution of optical power using a digital camera and its processing in MATLAB.
PM optical fiber with a PM single mode couplers or splitters at each fiber end can be used as a sensitive structure for
fiber sensing applications. The sensitive structure is created with two lasers at λ = 1550 nm. Each laser is connected to
the opposite sides of two the single mode PM couplers with PM fiber connecting both PM couplers. One DFB laser is
isolated and its light goes through variable attenuator. Isolation is necessary for DFB laser stability. The second laser is
F-P laser without any isolator. Its radiation is driven as with driven current so with DFB laser passing through SM optical
fiber. Small changes of DFB laser light spectrum passing through PM optical fiber activate large changes in FP laser
radiation spectra. DFB laser is tunable with temperature and its radiation is a stimulated light for FP laser. If the power of
DFB laser is above threshold power, FP laser losses its multimode behavior. Threshold powers, tunable range of DFB
laser, changes in mode structures of FP laser will be presented together with application possibilities of coupled laser
diodes system.
This article deals with spectral characteristics measurement of fiber couplers which are used for FTTx networks. Due to
WDM systems we are able to communicate with several wavelengths at a time. In xPON systems the data transmission
runs at wavelengths 1310 nm, 1490 and 1550 nm, in case of using singlemode fibers, or at 850 nm and 1300 nm in case
of using multimode fibers. The target of this work is a testing how the individual parameters of fiber coupler behave
whether broad spectrum light source is connected to the input. In sum it was measured four most often used fiber
couplers, fiber coupler in port configuration 1x2 with coupling ratio 50/50%, fiber coupler in port configuration 1x2 with
coupling ratio 30/70%, fiber coupler in port configuration 1x2 with coupling ratio 10/90% and fiber coupler in port
configuration 1×4 with coupling ratio 4×25%. For these fiber couplers it was set insertion losses, coupling ratios,
homogeneities and total losses by using a broad spectrum light source. The results are valuable information for
companies which deal with optical networks.
The free space optical links have found their major application in today's technological society. The demand for quality
broadband is a must for all types of end users in these times. Because of the large jamming from wireless radio networks
in non-licensed ISM bands, the free space optical links provide bridging of some densely populated urban areas. Their
advantage is the high transmission rate for relatively long distances. However, the disadvantage is the dependence of free
space optical links on atmospheric influences. Aired collimated optical beam passes through the atmospheric
transmission environment and by its influence cause the deformation of the optical beam. Author's team decided to
construct a special measuring device for measurement of optical power in FSO link beam cross-section. The equipment
is mobile and can be rearranged and adjust according to the given location and placement of the FSO link at any time.
The article describes the individual structural elements of the measuring equipment, its controlling and application for
evaluation and adjustment of measuring steps. The graphs from optical power measurements in the beam cross-section of
professional FSO links are presented at the end.
Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion
of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing
component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical
signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes
in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used
Mach- Zehnder interferometer with conventional SM and PM fibers excited with the DFB laser at wavelength of 1550
nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring
card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two
waves passing through single interferometer arm. The optical fiber SMF 28e or PM PANDA fiber in one arm is
referential; the second one is positioned on measuring slab at dimensions of 1×2m. A movement of persons over the slab
was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes
of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic
frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero
to 10 kHz. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view
of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability
measurements and the gained spectra at repeated drops of balls were compared. Those stroked upon the same place and
from the same elevation and dispersion of the obtained frequency spectra was evaluated. These experiments were
performed on the series of 20 repeated drops from highs of 0,5 and 1m. The evaluation of experiments displayed that the
dispersion of measured values is lower than 4% and could be reduced by PM fibers usage.
Polyaniline hydrochloride was prepared by the oxidation of aniline hydrochloride with ammonium peroxodisulfate in
dilute hydrochloric acid. The polyaniline films were produced during the polymerization on the microscope glass
surfaces immersed in the reaction mixture. The thin film was created and its thickness has been about 100 nm. We have
measured the spectral transmittance together with temperature changes. The polyaniline thin film is conductive and we
observed changes in optical transmittance spectra and reflective spectra with electric current. Optical spectra have been
measured in range from 380 nm to 1010 nm.
The electric conductivity has been changed with silicate substrate. This substrate influenced the free electrons
distribution and therefore the optical properties of polyaniline. Due to electric current going through the nanofilm its
sensitivity to temperature has been increased. We also observed two specific spectral windows. The first one was
characterized by its insensitivity to temperature; the second one has been temperature sensitive. The central wavelength
of insensitive window is about 500nm. This property can be the base for novel sensors structures.
We used Ocean Optics USB spectrometer for evaluation of spectral changes. Wideband white light halogen source
from the same manufacturer has been applied as a light source. Small polarizing dependence of reflected light has been
observed too.
The team of authors tries to provide information on the results of the fiber-optic DTS system application under long-term
research of accumulation possibilities of thermal energy in the rock mass in this article. In 2006, was in Ostrava
implemented the largest object in the Czech Republic, which is heated by heat pump system. It is a multi-purpose aula at
VŠB-TU + CIT (Center for Information Technology). The installed heat pump system consists of ten heat pumps with a
total output of 700kW and 110 wells about 140m deep. The applied research is conducted in two measuring polygons
("Big" and "Little" polygon). Simultaneously with fiber-optic DTS system is applied group of PT1000 temperature
sensors and Geothermal Response Test (GERT). Fiber-optic DTS system is deployed inside polyethylene PE collector
via a special sensory fiber optic cable. The ecological antifreeze mixture, based on the technical spirit, used for the
collection and delivery of energy to the rock mass circulates inside of PE collector. PT1000 temperature sensors are
placed at certain intervals on the outer side of the PE U-tube within the heat well. The result of application of the fiberoptic
DTS system is information about the heat profile of wells, thermal conductivity of the geological environment and
the impact of external changes in the thermal wells, along with the accumulation possibilities of thermal energy in the
rock mass (over-summer period).
The fiber optic sensors have a great possibilities thanks to its sizes, features and usage possibilities in measurement
engineering. Optical fiber is mostly used as a medium for the transfer of information, but if we consider an optical fiber
as a sensor then the other usage can be found for example in medicine or biology. If the optical fiber is heated by
sufficiently high temperature, the light signal starts to be emitted in the internal structure. This signal has a spectral
characteristic, which can be used for evaluation of temperature thanks to quality analysis. The article will describe the
evaluation of spectral characteristics for utilizationof optical fiber as fiber optic sensor for very high temperatures.
Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion
of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing
component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical
signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes
in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used
Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was
terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module
that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing
through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on
measuring slab at dimensions of 1x2m. A movement of persons over the slab was monitored, signal processed with FFT
and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect
that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for
particular persons. The scope of measuring frequencies proceeded from zero to 10 KHz. It was also displayed in
experiments that the experimental subjects, who walked around the slab and at the same time they have had changed
their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the
stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical
experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and the gained
spectra at repeated drops of balls were compared. Those stroked upon the same place and from the same elevation and
dispersion of the obtained frequency spectra was evaluated. These experiments were performed on the series of 20
repeated drops from highs of 0,5 and 1m. The evaluation of experiments displayed that the dispersion of measured
values is lower than 4%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.