In the GRAVITY+ project, GRAVITY is presently undergoing a series of upgrades to enhance its performance, add wide field capability and thereby expand its sky coverage. Some aspects of these improvements have already been implemented and commissioned by the end of 2021, making them accessible to the community. The augmentation of sky coverage involves increasing the maximum angular separation between the celestial science object and the fringe tracking object from the previous 2 arcseconds (limited by the field of view of the VLTI) to 20 – 30 arcseconds (constrained by atmospheric conditions during observation). Phase 1 of GRAVITY+ Wide utilizes the earlier PRIMA Differential Delay Lines to compensate for the optical path length variation between the science and fringe tracking beams throughout an observation. In phase 2, we are upgrading the existing beam compressors (BC) to integrate optical path length difference compensation directly into the BC. This modification eliminates five optical reflections per beam, thereby enhancing the optical throughput of the VLTI–GRAVITY system and the bandwidth of the vibrational control. We will present the implementation of phase 2 and share preliminary results from our testing activities for GRAVITY+ Wide.
As part of the GRAVITY+ project, the near-infrared beam combiner GRAVITY and the VLTI are currently undergoing a series of significant upgrades to further improve the performance and sky coverage. The instrumental changes will be transformational, and for instance uniquely position GRAVITY to observe the broad line region of hundreds of Active Galactic Nuclei (AGN) at a redshift of two and higher. The increased sky coverage is achieved by enlarging the maximum angular separation between the celestial science object (SC) and the off-axis fringe tracking (FT) star from currently 2 arcseconds (arcsec) up to unprecedented 30 arcsec, limited by the atmospheric conditions. This was successfully demonstrated at the VLTI for the first time.
Multi-conjugated adaptive optics (MCAO) is essential for performing astrometry with the Extremely Large Telescope (ELT). Unlike most of the 8-m class telescopes, the ELT will be a fully adaptive telescope, and a significant portion of the adaptive optics (AO) dynamic range will be depleted by the correction and stabilization of the telescope aberrations and instabilities. MCAO systems are of particular interest for ground-based astrometry since they stabilize the low-order field distortions and transient plate scale instabilities, which originate from the telescope and in the instrument. All instruments have several optical elements relatively far away from the pupil that can potentially challenge the astrometric precision of the observations with their residual mid-spatial frequencies errors. Using a combined simulation of ray tracing and AO numerical codes, we assess the impact of these systematic errors at different field-of-view (FoV) scales and fitting scenarios. The distortions have been assessed at different sky position angles (PA) and indicate that over large FoVs only small PA ranges (±1 deg to 3 deg) are accessible with astrometric residuals ≤50 μas. A full compliance with the astrometric requirement, at any PA, is achievable for 2 arc sec2 FoV patches already with a third-order polynomial. The natural partition of the optical system into three segments, i.e., the ELT, the MAORY MCAO module, and the MICADO instrument, resembles a splitting of the astrometric problem into the three subsystems that are characterized by different distortion amplitudes and calibration strategies. The result is a family portrait of the different optical segments with their specifications, dynamic motions, conjugation height, and AO correctability, leading to tracing their role in the bigger puzzle of the 50-μas as astrometric endeavor.
MCAO is essential to perform astrometry with the Extremely Large Telescope (ELT). Differently from the 8m class telescopes, the ELT will be a fully adaptive telescope, and a significant portion of the Adaptive Optics (AO) dynamic range will be absorbed by the correction and stabilization of the telescope aberrations and instabilities. Of particular interest for the ground-based astrometry is the use of Multi-Conjugated AO systems that allow to stabilize the low order field distortions against the transient plate scale instabilities of different origin occurring at the telescope and in the instrument. The instruments have several optical elements relatively far away from the pupil that can potentially challenge the astrometric precision of the observations with their residual mid-spatial frequencies errors. Using a combined simulation of ray tracing and AO numerical codes we assess the impact of these systematic errors at different field of view scales and fitting scenarios. The distortions have been assessed at different sky Position Angles (PA) and indicate that over large field of views only small PA ranges (±1°-3°) are accessible with astrometric residuals 50 µas. A full compliance, at any PA is achievable for 2 arcsec2 FoV patches already with a 3rd order polynomial. The natural partition of the optical system in three segments, ELT-MAORY-MICADO, respectively telescope, MCAO module and instrument, resembles also a splitting of the astrometric problem in the three subsystems that are characterized by different distortion amplitudes and calibration strategies. The result is a family portrait of the different optical segments with their prescription, dynamic motions, conjugation height and AO correctability, leading to trace their role in the bigger puzzle of the 50 μas astrometric endeavor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.