We have demonstrated high density, 2D (4x12) VCSEL arrays operating at an aggregate data rate of over 480Gb/s in an aerial density of 1400x3750 μm2, or 9.14 Tbs/cm2. These flip-chip, bottom-emitting 990nm VCSELs have low drive voltage, low electrical parasitics, improved thermal impedance and 2D scalability over their wire-bonded top emitting counterparts. Excellent high speed performance was obtained through the use of 1) compressively strained InGaAs MQW active region 2) low parasitic capacitance oxide-confined VCSEL structures and 3) low series resistance, high index contrast AlGaAs/GaAs mirrors. 10Gb/s operation was obtained with low operating current density of ~6kA/cm2 at 70C. Our best results to date have achieved data rates greater than 12.5Gb/s @70C at a current density less than 10kA/cm2. The device results show good agreement with theoretically calculated/simulated values.
This work was partially supported by DARPA under contract MDA972-03-3-0004.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.