Gastric cancer is a deadly disease afflicting millions annually, with overall poor prognosis due to lack of effective detection and localization tools. Optical coherence elastography is a promising technique for assessing mechanical properties of tissue, which could be valuable for early detection of stomach cancer, which can influence the stiffness of tissue. We evaluate the suitability of OCE for assessing mechanical properties of tissue for clinical specimens of normal and stomach cancer, finding that the stiffness is increased by up to twofold in cases of cancer. These results show promise for validating OCE as a tool for localizing stomach cancer.
We present the design and feasibility testing of a multimodal co-registered endoscope based on a dual-path optical system integrated with a scanning piezo. This endoscope incorporates three different imaging modalities. A large field-of-view (FOV) reflectance imaging system enables visualization of objects several millimeters in front of the endoscope, while optical coherence microscopy (OCM) and multiphoton microscopy (MPM) are employed in contact with tissue to further analyze suspicious areas. The optical system allows multiple different imaging modalities by employing a dual optical path. One path features a low numerical aperture (NA) and wide FOV to allow reflectance imaging of distant objects. The other path features a high NA and short working distance to allow microscopy techniques such as OCM and MPM. Images of test targets were obtained with each imaging modality to verify and characterize the imaging capabilities of the endoscope. The reflectance modality was demonstrated with a 561 nm laser to allow high contrast with blood vessels. It achieved a lateral resolution of 24.8 μm at 5 mm and a working distance from 5 to 30 mm. OCM was performed with a 1300 nm super-luminescent diode since this wavelength experiences low relative scattering to allow for deeper tissue imaging. Measured OCM lateral and axial resolution was 4.0 and 14.2 μm, respectively. MPM was performed with a custom 1400 nm femtosecond fiber laser, a wavelength suitable for exciting multiple exogenous, and some endogenous fluorophores, as well as providing information on tissue composition through harmonic generation processes. A 4.0 μm MPM lateral resolution was measured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.