We present an advanced system for calibrating the detector gain responsivity with a chopped thermal source for POLARBEAR-2a, which is the first receiver system of a cosmic microwave background (CMB) polarimetry experiment: the Simons Array. Intensity-to-polarization leakage due to calibration errors between detectors can be a significant source of systematic error for a polarization-sensitive experiment. To suppress this systematic uncertainty, POLARBEAR-2a calibrates the detector gain responsivities by observing a chopped thermal source before and after each period of science observations. The system includes a high-temperature ceramic heater that emits blackbody radiation covering a wide frequency range and an optical chopper to modulate the radiation signal. We discuss the experimental requirements of gain calibration and system design to calibrate POLARBEAR-2a. We evaluate the performance of our system during the early commissioning of the receiver system. This calibration system is promising for the future generation of CMB ground-based polarization observations.
The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5× expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope.
The Simons Array is a set of three millimeter-wavelength telescopes in the Atacama Desert in northern Chile. It is designed to measure the polarization of the cosmic microwave background caused by density perturbations, gravitational lensing, and primordial gravitational waves. Polarbear-2b (PB-2b) is the receiver that will be mounted onto the Paul Simons Telescope, the second Simons Array telescope. Each pixel in the PB-2b focal plane has a broadband sinuous antenna coupled to transition-edge sensor (TES) bolometers. In all, there are more than 7,500 antenna-coupled TES bolometers which are biased and read out using a digital frequency-domain multiplexing framework. We implement a multiplexing factor of 40 with resonator frequencies ranging from 1.6 MHz to 4.6 MHz. These resonators are connected to superconducting quantum interference device arrays that provide a signal amplification stage. We present Polarbear-2b detector and readout characterization results from in-lab testing that enabled the deployment of PB-2b to Chile in March 2020.
The next generations of Cosmic Microwave Background (CMB) polarimetry experiments will attempt to detect the faint primordial B-mode signal from gravitational waves. The increasing scale of photon-noise limited detector arrays of millimeter-wave astrophysics has led to the need for cryogenic refractive optics with large aperture, high dielectric constant, and low loss. Additionally, multiple frequency band observations for galactic foreground removal from CMB signal require broad bandwidth optics. Modern CMB polarimetry experiments use several cryogenically cooled refractive elements made of alumina or silicon. Their high dielectric constants require multiple layers of anti-reflection (AR) coating with different dielectric constants to minimize reflection at the dielectric boundaries. We have developed an AR coating technology for millimeter-wave optics which achieves minimal dissipative loss and broad bandwidth with a simple and accurate fabrication process. Ceramic coatings are applied using a standard plasma spray system. We tune the dielectric constant of the coating by mixing hollow ceramic microspheres with alumina powder as the base material or varying the parameters of the plasma system. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. The ceramic coating also has matching coefficient of thermal contraction with alumina and silicon for robustness to cryogenic delamination. We report on the design, fabrication methodology, and measurement of coating uniformity, repeatability, and transmission at room and cryogenic temperatures. This technology is applicable from submillimeter to millimeter wavelengths for coatings with greater than octave bandwidth.
The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, low-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date.
The South Pole Telescope (SPT) is a millimeter-wavelength telescope designed for high-precision measurements of the cosmic microwave background (CMB). The SPT measures both the temperature and polarization of the CMB with a large aperture, resulting in high resolution maps sensitive to signals across a wide range of angular scales on the sky. With these data, the SPT has the potential to make a broad range of cosmological measurements. These include constraining the effect of massive neutrinos on large-scale structure formation as well as cleaning galactic and cosmological foregrounds from CMB polarization data in future searches for inflationary gravitational waves. The SPT began observing in January 2017 with a new receiver (SPT-3G) containing ~16,000 polarization-sensitive transition-edge sensor bolometers. Several key technology developments have enabled this large-format focal plane, including advances in detectors, readout electronics, and large millimeter-wavelength optics. We discuss the implementation of these technologies in the SPT-3G receiver as well as the challenges they presented. In late 2017 the implementations of all three of these technologies were modified to optimize total performance. Here, we present the current instrument status of the SPT-3G receiver.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic
microwave background (CMB) using a series of telescopes which will cover angular scales between 1 arcminute
and tens of degrees, contain over 40,000 detectors, and sample frequencies between 27 and 270 GHz. SO will
consist of a six-meter-aperture telescope coupled to over 20,000 detectors along with an array of half-meter
aperture refractive cameras, coupled to an additional 20,000+ detectors. The unique combination of large and
small apertures in a single CMB observatory, which will be located in the Atacama Desert at an altitude of
5190 m, will allow us to sample a wide range of angular scales over a common survey area. SO will measure
fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect,
constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. The complex
set of technical and science requirements for this experiment has led to innovative instrumentation solutions
which we will discuss. The large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter
and over 2 m long, creating a number of interesting technical challenges. Concurrently, we are designing an array
of half-meter-aperture cryogenic cameras which also have compelling design challenges. We will give an overview
of the drivers for and designs of the SO telescopes and the cryogenic cameras that will house the cold optical
components and detector arrays.
The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal plane has increased by an order of magnitude from previous instruments to ~16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane.
POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID).
The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)).
We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.
The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates the development of quasi-optically-coupled (lenslet-coupled), multi-chroic detectors. These detectors can be sensitive across a broader bandwidth compared to waveguide-coupled detectors. However, the increase in bandwidth comes at a cost: the lenses (up to ~700 mm diameter) and lenslets (~5 mm diameter, hemispherical lenses on the focal plane) used in these systems are made from high-refractive-index materials (such as silicon or amorphous aluminum oxide) that reflect nearly a third of the incident radiation. In order to maximize the faint CMB signal that reaches the detectors, the lenses and lenslets must be coated with an anti-reflective (AR) material. The AR coating must maximize radiation transmission in scientifically interesting bands and be cryogenically stable. Such a coating was developed for the third generation camera, SPT-3G, of the South Pole Telescope (SPT) experiment, but the materials and techniques used in the development are general to AR coatings for mm-wave optics. The three-layer polytetra uoroethylene-based AR coating is broadband, inexpensive, and can be manufactured with simple tools. The coating is field tested; AR coated focal plane elements were deployed in the 2016-2017 austral summer and AR coated reimaging optics were deployed in 2017-2018.
Y. Inoue, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dünner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, N. Whitehorn, A. Zahn, O. Zahn
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♦, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 ≤ ℓ ≤ 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of
3.2 μK·arcmin. including the ongoing studies.
The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of ~16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.
N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, L. Steinmetz, R. Stompor, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, A. Zahn, O. Zahn
The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.
Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a
straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic
pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we
present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the
South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels,
each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and
220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is
comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to
define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors.
Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G
detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the
effect of processing on the Ti/Au TES’s Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc
between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the
arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for
all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between
0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the
baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from
these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication
process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.