The Simons Observatory (SO) is a Cosmic Microwave Background experiment located in the Atacama Desert in Chile. SO consists of three small aperture telescopes (SATs) and one large aperture telescope (LAT) with a total of 60,000 detectors in six frequency bands.1 As an observatory, SO encompasses hundreds of hardware components simultaneously running at different readout rates—all separate from its 60,000 detectors on-sky and their metadata. We provide an overview of commissioning SO’s data acquisition software system for SAT-MF1, the first SAT deployed to the Atacama site. Additionally, we share insights from deploying data access software for all four telescopes, detailing how performance limitations affected data loading and quality investigations, which led to site-compatible software improvements.
The Simons Observatory (SO) is a group of modern telescopes dedicated to observing the polarized cosmic microwave background (CMB), transients, and more. The Observatory consists of four telescopes and instruments, with over 60,000 superconducting detectors in total, located at ∼5,200m altitude in the Atacama Desert of Chile. During observations, it is important to ensure the detectors, telescope platforms, calibration and receiver hardware, and site hardware are within operational bounds. To facilitate rapid response when problems arise with any part of the system, it is essential that alerts are generated and distributed to appropriate personnel if components exceed these bounds. Similarly, alerts are generated if the quality of the data has become degraded. In this paper, we describe the SO alarm system we developed within the larger Observatory Control System (OCS) framework, including the data sources, alert architecture, and implementation. We also present results from deploying the alarm system during the commissioning of the SO telescopes and receivers.
The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile’s Atacama Desert. During its survey, the observatory’s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes’ receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory’s large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning.
The Simons Observatory (SO) is a ground-based cosmic microwave background experiment currently being deployed to Cerro Toco in the Atacama Desert of Chile. The initial deployment of SO, consisting of three 0.46m-diameter small-aperture telescopes and one 6m-primary large-aperture telescope, will field over 60,000 transition-edge sensors that will observe at frequencies between 30 GHz and 280 GHz. SO will read out its detectors using Superconducting Quantum Interference Device (SQUID) microwave-frequency multiplexing (µmux), a form of frequency division multiplexing where an RF-SQUID couples each TES bolometer to a superconducting resonator tuned to a unique frequency. Resonator frequencies are spaced roughly every 2 MHz between 4 and 6 GHz, allowing for multiplexing factors on the order of 1000. One challenge of µmux is matching each tracked resonator with its corresponding physical detector. Variations in resonator fabrication, and frequency shifts between cooldowns caused by trapped flux can cause the measured resonance frequencies to deviate significantly from their designed values. In this study, we introduce a method for pairing measured and designed resonators by constructing a bipartite graph based on the two resonator sets and assigning edge weights based on measured resonator and detector properties such as resonance frequency, detector pointing, and assigned bias lines. Finding the minimum-cost matching for a given set of edge weights is a well-studied problem that can be solved very quickly, and this matching tells us the best assignment of measured resonators to designed detectors for our input parameters. We will present results based on the first on-sky measurements from SAT1, the first SO MF small-aperture telescope.
The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) observatory consisting of three small aperture telescopes and one large aperture telescope. SO is located in the Atacama Desert in Chile at an elevation of 5180m. Distributed among the four telescopes are over 60,000 Transition-Edge Sensor (TES) bolometers across six spectral bands centered between 27 and 280 GHz. A large collection of ancillary hardware devices which produce lower rate “housekeeping” data are used to support the detector data collection. We developed a distributed control system, which we call the observatory control system (ocs), to coordinate data collection among all systems within the observatory. ocs is a core component of the deployed site software, interfacing with all on-site hardware. Alongside ocs we utilize a combination of internally and externally developed open-source projects to enable remote monitoring, data management, observation coordination, and data processing. Deployment of a majority of the software is done using Docker containers. The deployment of software packages is partially done via automated Ansible scripts, utilizing a GitOps based approach for updating infrastructure on site. We describe an overview of the software and computing systems deployed within SO, including how those systems are deployed and interact with each other. We also discuss the timing distribution system and its configuration as well as lessons learned during the deployment process and where we plan to make future improvements.
The Simons Observatory (SO) is a next-generation ground-based telescope located in the Atacama Desert in Chile, designed to map the cosmic microwave background (CMB) with unprecedented precision. The observatory consists of three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT), each optimized for distinct but complementary scientific goals. To achieve these goals, optimized scan strategies have been defined for both the SATs and LAT. This paper describes a software system deployed in SO that effectively translates high-level scan strategies into realistic observing scripts executable by the telescope, taking into account realistic observational constraints. The data volume of SO also necessitates a scalable software infrastructure to support its daily data processing needs. This paper also outlines an automated workflow system for managing data packaging and daily data reduction at the site.
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sensor (TES) detectors at 100 mK across 7 optics tubes (OT), all within the Large Aperture Telescope Receiver (LATR). Additionally, the LATR has the capability to expand to 62,000 TES across 13 OTs. The LAT will be capable of making arcminute-resolution observations of the CMB, with detector bands centered at 30, 40, 90, 150, 230, and 280 GHz. We have rigorously tested the LATR systems prior to deployment in order to fully characterize the instrument and show that it can achieve the desired sensitivity levels. We show that the LATR meets cryogenic and mechanical requirements, and maintains acceptably low baseline readout noise.
The Simons Observatory is a ground-based cosmic microwave background survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5200 m in the Atacama Desert in Chile. SO will deploy 60,000 transition-edge sensor (TES) bolometers in 49 separate focal-plane modules across a suite of four telescopes covering 30/40 GHz low frequency (LF), 90/150 GHz mid frequency (MF), and 220/280 GHz ultra-high frequency (UHF). Each MF and UHF focal-plane module packages 1720 optical detectors spreading across 12 detector bias lines that provide voltage biasing to the detectors. During observation, detectors are subject to varying atmospheric emission and hence need to be re-biased accordingly. The re-biasing process includes measuring the detector properties such as the TES resistance and responsivity in a fast manner. Based on the result, detectors within one bias line then are biased with suitable voltage. Here we describe a technique for re-biasing detectors in the modules using the result from bias-step measurement.
The Simons Observatory (SO) is a ground based Cosmic Microwave Background experiment that will be deployed to the Atacama Desert in Chile. SO will field over 60,000 transition edge sensor (TES) bolometers that will observe in six spectral bands between 27 GHz and 280 GHz with the goal of revealing new information about the origin and evolution of the universe. SO detectors are grouped based on their observing frequency and packaged into Universal Focal Plane Modules, each containing up to 1720 detectors which are read out using microwave SQUID multiplexing and the SLAC Microresonator Radio Frequency Electronics (SMuRF). By measuring the complex impedance of a TES we are able to access many thermoelectric properties of the detector that are difficult to determine using other calibration methods, however it has been difficult historically to measure complex impedance for many detectors at once due to high sample rate requirements. Here we present a method which uses SMuRF to measure the complex impedance of hundreds of detectors simultaneously on hour-long timescales. We compare the measured effective thermal time constants to those estimated independently with bias steps. This new method opens up the possibility for using this characterization tool both in labs and at the site to better understand the full population of SO detectors.
This conference presentation was prepared for the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
The Simons Observatory (SO) will be a CMB survey experiment with three small-aperture telescopes and one large-aperture telescope (the LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 TES bolometers in six spectral bands centered between 27 and 280 GHz. The 6 m LAT, targeting the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. The scientific objectives of the SO project requires these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the LATR optics tubes being carried out to verify the design and assembly of the tubes before deployment. The program includes a quick turn-around single tube test cryostat. We discuss the optical design specifications the tubes for deployment and the suite of optical test equipment prepared for these measurements.
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes (SATs) and one large-aperture telescope (LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SATs are optimized for a primordial gravitational wave signal in a parity odd polarization power spectrum at a large angular scale. We will present the latest status of the SAT development.
KEYWORDS: Observatories, Data acquisition, Telescopes, Microwave radiation, Control systems design, Control systems, Sensors, Bolometers, Optical instrument design, Distributed computing
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey
experiment with three small-aperture telescopes and one large-aperture
telescope, which will observe from the Atacama Desert in Chile. In total, SO
will field over 60,000 transition-edge sensor (TES) bolometers in six spectral
bands centered between 27 and 280 GHz in order to achieve the sensitivity
necessary to measure or constrain numerous cosmological quantities, as outlined
in The Simons Observatory Collaboration et al. (2019). To achieve these goals
we have built an open-sourced platform, called OCS (Observatory Control
System), which orchestrates distributed hardware systems. We provide an
overview of the SO software and computer infrastructure.
The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5m Small Aperture Telescopes (SATs) and one 6m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform our understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization.1 As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool ~60,000 transition-edge sensors (TES)2 to <100mK on a 1.7m diameter focal plane. The unprecedented scale of the LATR drives a complex design.3-5 In this paper, We will first provide an overview of the LATR design. Integration and validation of the LATR design is discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave- multiplexing (μMux) readout system implemented in the LATR and demonstrate operation of dark, prototype TES bolometers. The μMux readout technology enables one coaxial loop to read out Ο(103) TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime6 and CMB-S4.7, 8
The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combination of small (~0.5 m) and large (~6 m) aperture telescopes and will be located in the Atacama Desert in Chile. This work is part of a series of papers studying calibration, sensitivity, and systematic errors for SO. In this paper, we discuss current efforts to model optical systematic effects, how these have been used to guide the design of the SO instrument, and how these studies can be used to inform instrument design of future experiments like CMB-S4. While optical systematics studies are underway for both the small aperture and large aperture telescopes, we limit the focus of this paper to the more mature large aperture telescope design for which our studies include: pointing errors, optical distortions, beam ellipticity, cross-polar response, instrumental polarization rotation and various forms of sidelobe pickup.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic
microwave background (CMB) using a series of telescopes which will cover angular scales between 1 arcminute
and tens of degrees, contain over 40,000 detectors, and sample frequencies between 27 and 270 GHz. SO will
consist of a six-meter-aperture telescope coupled to over 20,000 detectors along with an array of half-meter
aperture refractive cameras, coupled to an additional 20,000+ detectors. The unique combination of large and
small apertures in a single CMB observatory, which will be located in the Atacama Desert at an altitude of
5190 m, will allow us to sample a wide range of angular scales over a common survey area. SO will measure
fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect,
constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. The complex
set of technical and science requirements for this experiment has led to innovative instrumentation solutions
which we will discuss. The large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter
and over 2 m long, creating a number of interesting technical challenges. Concurrently, we are designing an array
of half-meter-aperture cryogenic cameras which also have compelling design challenges. We will give an overview
of the drivers for and designs of the SO telescopes and the cryogenic cameras that will house the cold optical
components and detector arrays.
The Simons Observatory (SO) will observe the temperature and polarization anisotropies of the cosmic microwave background (CMB) over a wide range of frequencies (27 to 270 GHz) and angular scales by using both small (∼0.5 m) and large (∼6 m) aperture telescopes. The SO small aperture telescopes will target degree angular scales where the primordial B-mode polarization signal is expected to peak. The incoming polarization signal of the small aperture telescopes will be modulated by a cryogenic, continuously-rotating half-wave plate (CRHWP) to mitigate systematic effects arising from slowly varying noise and detector pair-differencing. In this paper, we present an assessment of some systematic effects arising from using a CRHWP in the SO small aperture systems. We focus on systematic effects associated with structural properties of the HWP and effects arising when operating a HWP, including the amplitude of the HWP synchronous signal (HWPSS), and I → P (intensity to polarization) leakage that arises from detector non-linearity in the presence of a large HWPSS. We demonstrate our ability to simulate the impact of the aforementioned systematic effects in the time domain. This important step will inform mitigation strategies and design decisions to ensure that SO will meet its science goals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.