In recent years, the overlay specifications of advanced semiconductor devices have become extremely stringent. This challenging situation becomes severe for every new generation of the device development. However, conventional overlay metrology systems have limited throughput due to their point-based nature. Here, we first demonstrate the novel imaging Mueller-matrix spectroscopic ellipsometry (MMSE) technique, which can measure the overlay error of all cell blocks on a device wafer with extremely high throughput, much faster than conventional point-based spectroscopic ellipsometry (SE) technologies. It provides the super large field of view (FOV) ~ 20 × 20 mm2 together with high sensitivity based on Mueller information, which will be truly innovated solution not only for the overlay metrology, but also for critical dimension (CD) measurement, eventually maximizing process control and productivity of advanced node.
In this paper, we propose an unique metrology technique for the measurement of three-dimensional (3D) nanoscale structures of semiconductor devices, employing imaging-based massive Mueller-matrix spectroscopic ellipsometry (MMSE) with ultra-wide field of view (FOV) of 20×20 mm2. The proposed system enables rapid measurement of 10 million critical dimension (CD) values from all pixels in the image, while the conventional point-based metrology technique only measures a single CD value. We obtain Mueller matrix (MM) spectrum by manipulating wavelength and polarization states using a custom designed optical setup, and show that the proposed method characterizes complex 3D structures of the semiconductor device. We experimentally demonstrate CD measurement performance and consistency in the extremely large FOV, and suggest that the combination of MMSE and massive measurement capability can provide valuable insights: fingerprints originated from the manufacturing process, which are not easily obtained with conventional techniques.
Background: High-throughput three-dimensional metrology techniques for monitoring in-wafer uniformity (IWU) and in-cell uniformity (ICU) are critical for enhancing the yield of modern semiconductor manufacturing processes. However, owing to physical limitations, current metrology methods are not capable of enabling such measurements. For example, the optical critical dimension technique is not suitable for ICU measurement, because of its large spot size. In addition, it is excessively slow for IWU measurement.
Aim: To overcome the aforementioned limitation, we demonstrate a line-scan hyperspectral imaging (LHSI) system, which combines spectroscopy and imaging techniques to provide sufficient information for spectral and spatial resolution, as well as high throughput.
Approach: The proposed LHSI system has a 5-μm spatial resolution together with 0.25-nm spectral resolution in the broad-wavelength region covering 350 to 1100 nm.
Results: The system enables the simultaneous collection of massive amounts of spectral and spatial information with an extremely large field of view of 13 × 0.6 mm2. Additionally, throughput improvement by a factor of 103 to 104 can be achieved when compared with standard ellipsometry and reflectometry tools.
Conclusions: Owing to its high throughput and high spatial and spectral resolutions, the proposed LHSI system has considerable potential to be adopted for high-throughput ICU and IWU measurements of various semiconductor devices used in high-volume manufacturing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.