LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES)
microcalorimeters optimized for solar physics. By combining high spectral (E/ΔE ~1600) and temporal (single photon
Δt ~10μs) resolutions with imaging capabilities, these devices will be able to study high-temperature (>10 MK) x-ray
lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both
microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads
associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions.
Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially
smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the
same spatial resolution. Early results show energy resolutions of Δ ΕFWHM ~30eV and spatial resolutions of ~10-15 μm,
suggesting the strip-detector concept is viable.
The Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket is sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high-spectral-resolution images of extended and point X-ray sources. Our first target is the Puppis A supernova remnant, which will be observed in January 2011. The Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with up to 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. Micro-X will utilize plasma diagnostics to determine the thermodynamic and ionization state of the plasma, to search for line shifts and broadening associated with dynamical processes, and seek evidence of ejecta enhancement. We describe the progress made in developing this payload, including the detector, cryogenics, and electronics assemblies. A detailed modeling effort has been undertaken to design a rocket-bourne adiabatic demagnetization refrigerator with sufficient magnetic shielding to allow stable operation of transition edge sensors, and the associated rocket electronics have been prototyped and tested.
Micro-X is a proposed sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high-spectral-resolution images of extended and point X-ray sources. We describe the payload and the science targeted by this mission including the discussion of three possible Micro- X targets: the Puppis A supernova remnant, the Virgo Cluster, and Circinus X-1. For example, a Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. Micro-X will utilize plama diagnostics to determine the thermodynamic and ionization state of the plasma, to search for line shifts and broadening associated with dynamical processes, and seek evidence of ejecta enhancement. For clusters of galaxies, Micro-X can uniquely study turbulence and the temperature distribution function. For binaries, Micro-X's high resolution spectra will separate the different processes contributing to the Fe K lines at 6 keV and give a clear view of the geometry of the gas flows and circumstellar gas.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.