The Line Emission Mapper (LEM) is an x-ray probe mission concept that is designed to provide unprecedented insight into the physics of galaxy formation, including stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. LEM incorporates a light-weight x-ray optic with a large-format microcalorimeter array. The LEM detector utilizes a 14k pixel array of transition-edge sensors (TESs) that will provide <2.5 eV spectral resolution over the energy range 0.2 to 2 keV, along with a field-of-view of 30 arcmin. The microcalorimeter array and readout builds upon the technology developed for the European Space Agency’s (ESA’s) Athena/x-ray Integral Field Unit. Here, we present a detailed overview of the baseline microcalorimeter design, its performance characteristics, including a detailed energy resolution budget and the expected count-rate capability. In addition, we outline the current status and plan for continued technology maturation. Behind the LEM array sits a high-efficiency TES-based anticoincidence (antico) detector that will reject cosmic-ray background events. We will briefly describe the design of the antico and plan for continued development.
With its first flight in 2018, Micro-X became the first program to fly Transition-Edge Sensors and their SQUID readouts in space. The science goal was a high-resolution, spatially resolved X-ray spectrum of the Cassiopeia A Supernova Remnant. While a rocket pointing error led to no time on target, the data was used to demonstrate the flight performance of the instrument. The detectors observed X-rays from the on-board calibration source, but a susceptibility to external magnetic fields limited their livetime. Accounting for this, no change was observed in detector response between ground operation and flight operation. This paper provides an overview of the first flight performance and focuses on the upgrades made in preparation for reflight. The largest changes have been upgrading the SQUIDs to mitigate magnetic susceptibility, synchronizing the clocks on the digital electronics to minimize beat frequencies, and replacing the mounts between the cryostat and the rocket skin to improve mechanical integrity. As the first flight performance was consistent with performance on the ground, reaching the instrument goals in the laboratory is considered a strong predictor of future flight performance.
Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be a flagship mission. One of Lynx’s three instruments is an imaging spectrometer called the Lynx x-ray microcalorimeter (LXM), an x-ray microcalorimeter behind an x-ray optic with an angular resolution of 0.5 arc sec and ∼2 m2 of area at 1 keV. The LXM will provide unparalleled diagnostics of distant extended structures and, in particular, will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the baseline design of LXM and some parallel approaches for some of the key technologies. The baseline sensor technology uses transition-edge sensors, but we also consider an alternative approach using metallic magnetic calorimeters. We discuss the requirements for the instrument, the pixel layout, and the baseline readout design, which uses microwave superconducting quantum interference devices and high-electron mobility transistor amplifiers and the cryogenic cooling requirements and strategy for meeting these requirements. For each of these technologies, we discuss the current technology readiness level and our strategy for advancing them to be ready for flight. We also describe the current system design, including the block diagram, and our estimate for the mass, power, and data rate of the instrument.
Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget.
Lynx is an x-ray telescope that is one of four large satellite mission concepts currently being studied by NASA to be the next flagship mission. One of Lynx’s three instruments is the Lynx X-ray Microcalorimeter (LXM), an imaging spectrometer placed at the focus of an x-ray optic with 0.5 arc-second angular resolution and approximately 2 m2 area at 1 keV. It will be used for a wide variety of observations, and the driving performance requirements are met through different sub-regions of the array. It will provide an energy resolution of better than 3 eV over the energy range of 0.2 to 7 keV, with pixels sizes that vary in scale from 0.5 to 1 arc-seconds in the inner 5 arc-minute field-of-view, and to 5 arc-seconds in the extended 20 arc-minute field-of-view.
The Main Array consists mostly of 1 arc-second pixels in the central 5 arc-minutes with less than 3 eV energy resolution (FWHM) in the energy range of 0.2 to 7 keV. It is enhanced in the inner 1 arc-minute region with 0.5 arc-second pixels that will better sample the point spread function of the X-ray optic. The inner 5 arc-minute region is designed specifically for the observations related to cosmic feedback studies, investigating the interactions of AGN with the local regions surrounding them. The 0.5" pixel size allows detailed studies of winds and jets on a finer angular scale. It is also optimized for spatially resolved measurements of cluster cores.
The outer regions of the array are designed to operate during a completely different set of observations. The Extended Array will be utilized for surveys over large regions of the sky, the 20 arc-minute field-of-view making it practical to make observations of the soft diffuse emission from larger scale-structure such as extended galaxies, the outer regions of galaxy groups and clusters and also cosmic filaments. This array is optimized for high energy resolution up to 2 keV through the use of thin (0.5 um) gold absorbers. The Ultra-High-Res Array is designed specifically to enable the study turbulent line broadening around individual through the study of the highly ionized oxygen lines. It is optimized for energy resolution for the oxygen VII and VIII lines, with better than 0.4 eV energy resolution.
In this paper we present the design of the baseline configuration and the scientific motivation. We discuss the technologies that are being developed for this instrument, in particular the transition-edge sensor (TES) and metallic magnetic calorimeter (MMC) sensor technologies. We place these technologies in the context of the required energy resolution, energy range, pixel size, and count-rate, as well as strategies for the pixel layout and wiring. We will discuss the use of microwave SQUIDs, HEMT amplifiers, and parametric amplifiers for the read-out and the implications for the cryogenic design. We also describe the design of the full instrument, including the strawman cryogenic design, as well as an estimate for the mass, power and data rate.
The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.
Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper.
Micro-X is a sounding rocket borne X-ray telescope that utilizes transition edge sensors to perform imaging
spectroscopy with a high level of energy resolution. Its 2.1m focal length X-ray optic has an effective area of 300
cm2, a field of view of 11.8 arcmin, and a bandpass of 0.1–2.5 keV. The detector array has 128 pixels and an
intrinsic energy resolution of 4.5 eV FWHM. The integration of the system has progressed with functional tests
of the detectors and electronics complete, and performance characterization of the detectors is underway. We
present an update of ongoing progress in preparation for the upcoming launch of the instrument.
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.
The Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket is a sounding rocket experiment
that will
combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to
obtain high- spectral-resolution images of extended X-ray sources. The target for Micro-X’s first
flight (slated for January
2013) is the Puppis A supernova remnant. The Micro-X observation of the bright eastern knot of
Puppis A will obtain a line-dominated spectrum with up to 27,000 counts collected in 300 seconds at
2 eV resolution across the 0.3-2.5 keV band. Micro-X will determine the thermodynamic and
ionization state of the plasma, search for line shifts and broadening associated with dynamical
processes, and seek evidence of ejecta enhancement. We describe the progress made in developing
this payload, including the detector, cryogenics, and electronics
assemblies.
Micro-X is a rocket-borne X-ray telescope which will use an array of Transition Edge Sensor (TES) microcalorimeters
to obtain high resolution soft X-ray spectra of extended astronomical sources. The microcalorimeter array consists of
128 pixels with a size of 590 μm × 590 μm each. The TESs are read out with a time-division Superconducting Quantum
Interference Device (SQUID) multiplexing system. The instrument's front end assembly, which contains the
microcalorimeter array and two SQUID amplification stages, is located at the focal point of a conically approximated
Wolter mirror with a focal length of 2100 mm and a point spread function of 2.4 arcmin half-power diameter. The
telescope's effective area amounts to ~ 300 cm2 at 1 keV. The TES array is cooled with an Adiabatic Demagnetization
Refrigerator. The first flight of Micro-X is scheduled for 2011, and will likely target a Si knot in the Puppis A supernova
remnant. The time available for the observation above an altitude of 160 km will be in excess of 300 seconds. The
design, manufacturing and assembly of the flight hardware has recently been completed, and system testing is underway.
We describe the final design of the Micro-X instrument, and report on the overall status of the project.
One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the
X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, is
based on X-ray micro-calorimeters with Transition Edge Sensor thermometers. The pixels have metallic X-ray absorbers
and are read-out by multiplexed SQUID electronics. The requirements for this instrument are demanding. In the central
array (40 x 40 pixels) an energy resolution of < 2.5 eV is required, whereas the energy resolution of the outer array is
more relaxed (≈ 10 eV) but the detection elements have to be a factor 16 larger in order to keep the number of read-out
channels acceptable for a cryogenic instrument. Due to the large collection area of the IXO optics, the XMS instrument
must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In
addition, an anti-coincidence detector is required to suppress the particle-induced background.
In this paper we will summarize the instrument status and performance. We will describe the results of design studies for
the focal plane assembly and the cooling systems. Also the system and its required spacecraft resources will be given.
MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd
Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor
bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large
single dish MUSTANG has a combination of high resolution (8) and good sensitivity to extended emission
which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished
in January 2008 and some of the first science data have been collected.
We are developing arrays of position-sensitive transition-edge sensor (PoST) X-ray detectors for future astronomy missions such as NASA's Constellation-X. The PoST consists of multiple absorbers thermally coupled to one or more transition-edge sensor (TES). Each absorber element has a different thermal coupling to the TES. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. PoST's are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels and are ideally suited to increasing the Constellation-X focal plane area, without comprising on spatial sampling. Optimizing the performance of PoST's requires careful design of key parameters such as the thermal conductances between the absorbers, TES and the heat sink, as well as the absorber heat capacities. Our new generation of PoST's utilizes technology successfully developed on high resolution (~ 2.5 eV) single pixels arrays of Mo/Au TESs, also under development for Constellation-X. This includes noise mitigation features on the TES and low resistivity electroplated absorbers. We report on the first experimental results from new one-channel, four-pixel, PoST's or 'Hydras', consisting of composite Au/Bi absorbers. We have achieved full-width-at-half-maximum energy resolution of between 5-6 eV on all four Hydra pixels with an exponential decay time constant of 620 μs. Straightforward position discrimination by means of rise time is also demonstrated.
The Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket is sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high-spectral-resolution images of extended and point X-ray sources. Our first target is the Puppis A supernova remnant, which will be observed in January 2011. The Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with up to 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. Micro-X will utilize plasma diagnostics to determine the thermodynamic and ionization state of the plasma, to search for line shifts and broadening associated with dynamical processes, and seek evidence of ejecta enhancement. We describe the progress made in developing this payload, including the detector, cryogenics, and electronics assemblies. A detailed modeling effort has been undertaken to design a rocket-bourne adiabatic demagnetization refrigerator with sufficient magnetic shielding to allow stable operation of transition edge sensors, and the associated rocket electronics have been prototyped and tested.
Individual x-ray calorimeters based on superconducting transition-edge sensors (TES) have already demonstrated
the spectral resolution, speed, and quantum efficiency needed for astrophysical x-ray spectroscopy. We are now
beginning to realize this capability on the array scale for the first time. We have developed a new design for the
x-ray absorber that has connections to the TES engineered to allow contact only in regions that do not serve
as the active thermometer. We have further constrained the design so that a low-resistance absorber will not
electrically short the TES, permitting the use of high-conductivity electroplated gold for the x-ray absorber.
With such a well-behaved material for the absorber, we now achieve energy resolution at 6 keV in the range 2.4
- 3.1 eV FWHM in all the pixels of the same design tested in a close-packed array. We have achieved somewhat
higher resolution and faster response by eliminating some of the gold and electroplating bismuth in its place.
These are important steps towards the high-resolution, high-fill-factor, microcalorimeter arrays needed for x-ray
astrophysics observatories such as Constellation-X.
Micro-X is a proposed sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high-spectral-resolution images of extended and point X-ray sources. We describe the payload and the science targeted by this mission including the discussion of three possible Micro- X targets: the Puppis A supernova remnant, the Virgo Cluster, and Circinus X-1. For example, a Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. Micro-X will utilize plama diagnostics to determine the thermodynamic and ionization state of the plasma, to search for line shifts and broadening associated with dynamical processes, and seek evidence of ejecta enhancement. For clusters of galaxies, Micro-X can uniquely study turbulence and the temperature distribution function. For binaries, Micro-X's high resolution spectra will separate the different processes contributing to the Fe K lines at 6 keV and give a clear view of the geometry of the gas flows and circumstellar gas.
We report on our studies of possible configurations for the focal plane of the Constellation-X mission. Taking
advantage of new developments in both SQUID multiplexing technology and position-sensitive detectors, we
present a viable focal plane intrument design that would greatly enhance the reference Constellation-X configuration
of a 32 × 32 array. An order of magnitude increase in the number of pixels of the focal plane array from
the current 1024-pixel reference design is achievable.
We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition-edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu or Au/Bi absorbers. We have achieved a resolution of 4.0 eV FWHM at 6 keV in such devices, which meets the Constellation-X resolution requirement at 6 keV. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25-mm pixels the standard absorber design is adequate to avoid unacceptable line-broadening from position dependence caused by thermal diffusion. In order to improve reproducibility and to push closer to the 2-eV goal at 6 keV, however, we are refining the design of the TES and the interface to the absorber. Recent efforts to introduce a barrier layer between the Bi and the Mo/Au to avoid variable interface chemistry and thus improve the reproducibility of device characteristics have thus far yielded unsatisfactory results. However, we have developed a new set of absorber designs with contacts to the TES engineered to allow contact only in regions that do not serve as the active thermometer. We have further constrained the design so that a low-resistance absorber will not electrically short the TES. It is with such a design that we have achieved 4.0 eV resolution at 6 keV.
The new frontier in astrophysics is the study of the very first stars, galaxies and black holes in the early Universe. These objects are beyond the grasp of the current generation of X-ray telescopes such as Chandra, and so the Generation-X Vision Mission has been proposed as an X-ray observatory which will be capable of detecting these earliest objects. Xray imaging and spectroscopy of such distant objects will require an X-ray telescope with large collecting area and high angular resolution. The Generation-X concept has 100 m2 collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the resolution goal for Constellation-X). The baseline mission involves four 8 m diameter telescopes operating at Sun-Earth L2. Such large telescopes will require either robotic or human-assisted in-flight assembly. To achieve the required effective area with launchable mass, very lightweight grazing incidence X-ray optics must be developed, having an areal density 100 times lower than in Chandra, with perhaps 0.1 mm thick mirrors requiring on-orbit figure control. The suite of available detectors for Generation-X should include a large-area high resolution imager, a cryogenic imaging spectrometer and a grating spectrometer.
We present our latest results from our development of Position-Sensitive Transition-Edge Sensors (PoSTs). Our devices work as one-dimensional imaging spectrometers. They consist of a long absorber (segmented or solid) with a transition-edge sensor (TES) on each end. When X-rays hit the absorber, the comparison of the signals sensed in the two TESs determine the position of the TES, while the addition of the signals gives the energy of the X-ray. We obtained impedance curves for three different devices and obtained reasonable fits with our theoretical PoST model.
We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low specific heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K, the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with a SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough to fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x 103 μm2μs-1 in a film that consists of 2.25 μm of Bi and 0.1 μm of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorber.
We are developing a distributed-readout imaging spectrometer named Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a microcalorimeter capagble of 1D imaging spectroscopy. It consists of two Transition-Edge Sensors (TESs) at each end of a long x-ray absorber. The position of an x-ray absorption event in the PoST is determined from the rise time and relative signal sizes in the two sensors. The energy of the absorbed photon is inferred from the sum of the two pulses. We discuss the modeling, operation, and readout of PoSTs and their application to the Constellation-X mission.
We present recent measurements obtained using a new method for characterizing transition edge sensor (TES) calorimeters: We measured the electrical impedance of a TES calorimeter throughout the superconducting to normal metal phase transition. The impedance method enables us to previously measure how the resistance and heat capacity of the TES varied throughout the phase transition. These measurements probe the internal state of oru Mo/Au TES. We also present recent results from measurements of noise in our TESs. Our measurements are instrumental toward understanding and optimizing our TES calorimeters.
After the design of the calorimeter array for the high-resolution x-ray spectrometer (XRS) on the original Astro-E was frozen, new fabrication techniques became available and our understanding of these devices continually increased. We are now able to complete the optimization of this technology and, potentially, to increase the capability of new XRS instrument for Astro-E2, our on-going sounding recket experiments, and possible further applications. The most significant improvement comes from greatly reducing the excess noise of the ion-implanted thermistors by increasing the thickness of the implanted region.
X-ray microcalorimeters using transition-edge sensors (TES) show great promise for use in astronomical x-ray spectroscopy. We have obtained very high energy resolution (2.8 eV at 1.5 keV and 3.7 eV at 3.3 keV) in a large, isolated TES pixel using a Mo/Au proximity-effect bilayer on a silicon nitride membrane. We will discuss the performance and our characterization of that device. In order to be truly suitable for use behind an x-ray telescope, however, such devices need to be arrayed with a pixel size and focal-plane coverage commensurate with the telescope focal length and spatial resolution. Since this requires fitting the TES and its thermal link, a critical component of each calorimeter pixel, into a far more compact geometry than has previously been investigated, we must study the fundamental scaling laws in pixel optimization. We have designed a photolithography mask that will allow us to probe the range in thermal conductance that can be obtained by perforating the nitride membrane in a narrow perimeter around the sensor. This mask will also show the effects of reducing the TES area. Though we have not yet tested devices of the compact designs, we will present our progress in several of the key processing steps and discuss the parameter space of our intended investigations.
In the X-ray astrophysics community, the desire for wide- field, high-resolution, X-ray imaging spectrometers has been growing for some time. We present a concept for such a detector called a Position-Sensing Transition-edge sensor (PoST). A PoST is a calorimeter consisting of two Transition- Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing the rise time and energy estimates obtained from each TES for a given event, the position of that event in the PoST is determined. Energy is inferred from the sum of the two signals on the TESs. We have designed 7, 15, and 32 pixel PoSTs using our Mo/Au TESs and bismuth absorbers. We discuss the theory, modeling, operation and readout of PoSTs and the latest results from our development.
Our detectors are superconducting transition edge sensors (TESs) optimized for the wide band detection of individual photons from the mid infrared, through the optical, and into the near ultraviolet. We typically achieve an energy resolution of 0.15 eV FWHM over this range with timing resolution of 100 ns. We have measured photon events with sub- microsecond rise times and 3 microsecond fall times allowing count rates as high as 30 kHz without significant degradation in energy resolution. Such characteristics along with the predicted high quantum efficiency (10% in IR to 50% in optical-UV) make our TES detectors very appealing for low-flux applications which have energy and timing requirements, such as fast spectrophotometry for observational astronomy. We present results from our recent observation of the Crab Pulsar (PSR BO531 + 21) which demonstrate the ability of our sensors to extract wide band phase-resolved spectroscopic information of the pulsar using the student-class 24 inch telescope on the campus of Stanford University. We present a description of the optical system and an analysis of the single pixel energy response.
COnstellation-X is a cluster of identical observatories that together constitute a promising concept for a next- generation, high-throughput, high-resolution, astrophysical x-ray spectroscopy mission. The heart of the Constellation-X mission concept is a high-quantum-efficiency imaging spectrometer with 2 eV resolution at 6 keV. Collectively across the cluster, this imaging spectrometer will have twenty times the collecting efficiency of XRS on Astro-E and better than 0.25 arc minute imaging resolution. The spectrometer on each satellite will be able to handle count rates of up to 1000 counts per second per imaging pixel for a point source and 30 counts per second per pixel for an extended source filling the array. Focal plane coverage of at least 2.5 arc minutes X arc minutes, comparable to XRS but with a factor of thirty more pixels, is required. This paper will present the technologies that have the potential to meet al these requirements. It will identify the ones chosen for development for Constellation-X and explain why those were considered closer to realization, and it will summarize the results of the development work thus far.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.