X-ray silicon-on-insulator (SOI) pixel sensors, “XRPIX,” are being developed for the next-generation x-ray astronomical satellite, “FORCE.” The XRPIX is fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si complementary metal oxide semiconductor (CMOS) circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with x-ray signals at the timing of x-ray detection. This function thus realizes high throughput and high time resolution, which enables to employ anti-coincidence technique for background rejection. A new series of XRPIX named XRPIX6E developed with a pinned depleted diode (PDD) structure improves spectral performance by suppressing the interference between the sensor and circuit layers. When semiconductor x-ray sensors are used in space, their spectral performance is generally degraded owing to the radiation damage caused by high-energy protons. Therefore, before using an XRPIX in space, it is necessary to evaluate the extent of degradation of its spectral performance by radiation damage. Thus, we performed a proton irradiation experiment for XRPIX6E for the first time at Heavy Ion Medical Accelerator in Chiba in the National Institute of Radiological Sciences. We irradiated XRPIX6E with high-energy protons with a total dose of up to 40 krad, equivalent to 400 years of irradiation in orbit. The 40-krad irradiation degraded the energy resolution of XRPIX6E by 25 ± 3 % , yielding an energy resolution of 260.1 ± 5.6 eV at the full-width half maximum for 5.9 keV X-rays. However, the value satisfies the requirement for FORCE, 300 eV at 6 keV, even after the irradiation. It was also found that the PDD XRPIX has enhanced radiation hardness compared to previous XRPIX devices. In addition, we investigated the degradation of the energy resolution; it was shown that the degradation would be due to increasing energy-independent components, e.g., readout noise.
We are developing an X-ray SOI pixel detector “XRPIX” for the next generation X-ray astronomical satellite “FORCE”. XRPIX is the detector using SOI (Silicon-On-Insulator) technology which makes it possible to integrate a high-resistivity Si sensor part and a low-resistivity Si CMOS circuit part. The CMOS circuit is equipped with the trigger function, which can read out only the output signal of the pixel where the X-ray is incident. This function realizes high throughput and high time resolution, enabling the background rejection with anticoincidence technique. A new series of XRPIX named XRPIX6E, we developed, with a Pinned Depleted Diode (PDD) structure improves the spectral performance by suppressing the interference between the sensor layer and the circuit layer. When semiconductor X-ray detectors are used in space, it is known that their spectral performance is degraded due to radiation damage caused by high-energy protons. Therefore, before using XRPIX in space, it is necessary to evaluate how much the spectral performance will be degraded by radiation damage. Then we performed proton irradiation experiment for XRPIX6E for the first time at HIMAC in National Institute of Radiological Sciences. We irradiated XRPIX with high-energy protons up to a total dose of 40 krad, equivalent to 400 years irradiation in orbit. As a result, the energy resolution in full width half maximum at the 5:9 keV degrades by 25 ± 3%, however, is better than the required performance of FORCE, 300 eV at 6 keV. It was also found that the PDD structure XRPIX has better radiation hardness than the previous XRPIX series. In addition, We investigated about the degradation of the energy resolution; it was found that the degradation would be due to increasing energy independent components, for example, readout noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.