Imaging the oxygenation distribution at a high spatial resolution in deep tissues such as bone marrow is important because it helps us in understanding the oxygenation’s role on stem cell proliferation and differentiation inside the bone marrow. Current technologies have limitations in imaging the oxygenation of deep targets. To overcome these limitations, x-ray Luminescence Computed Tomography (XLCT) has the potentials to image the oxygenation of bone marrow at a spatial resolution close to the focused x-ray beam size, which is better than 150 micrometers. In this study, oxygenation sensing films have been developed. Then, we have improved our XLCT imaging system by adding optical filters for measurements of photons at multiple wavelengths so that we are able to image the oxygenation of deep film targets. Then, we have conducted a phantom experiment to validate this approach. We obtained the oxygen concentration images by measuring the ratios of the XLCT images at two wavelengths.
Oxygenation concentration of tissue is an important factor in culturing stem cells and in studying the therapy response of cancer cells. The hypoxia bone marrow is the site to harbor cancer cells. Thus, direct high-resolution measurements of molecular O2 would provide powerful means of monitoring cultured stem cells and therapied cancer cells. We proposed an imaging approach to measure oxygenation concentration in deep tissues, based on the XLCT, with combined strengths of high chemical sensitivity and high spatial resolution. We have developed different biosensing films for oxygenation measurements and tested these films with X-ray luminescent experiments. We have also performed phantom experiments with multiple targets to validate the XLCT imaging system with measurements at two channels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.