This will count as one of your downloads.
You will have access to both the presentation and article (if available).
We are building a focused x-ray luminescence tomography (FXLT) imaging system, developing a machinelearning based FXLT reconstruction algorithm, and synthesizing nanophosphors with different emission wavelengths. In this paper, we will report our current progress from these three aspects. Briefly, we mount all main components, including the focused x-ray tube, the fiber detector, and the x-ray tube and x-ray detector for a microCT system, on a rotary which is a heavy-duty ring track. A microCT scan will be performed before FXLT scan. For a FXLT scan, we will have four PMTs to measure four fiber detectors at two different wavelengths simultaneously for each linear scan position. We expect the spatial resolution of the FXLT imaging will be around 100 micrometers and a limit of detection of approximately 2 μg/mL (for Gd2O2S:Eu).
Comparison of deep learning and human observer performance for lesion detection and characterization
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one