The coherent beam combination of kW fiber lasers with a filling aperture has been in research. An experiment is set up to achieve the coherent beam combination. The coherent beam combination of two fiber lasers with a filling aperture is realized, and the phase bandwidth of the beam combination is measured and analyzed. The laser spots before and after the combination are detected respectively. The phase noise of high power laser is measured and the factors affecting the phase noise are analyzed.
In this paper, we demonstrated an all fiber laser passively Q-switched by black phosphorus saturable absorber with cylindrical vector beam output. A piece of few-mode fiber Bragg grating was used as the mode-selective output coupler. The repetition rate of the pulse trains increased from 16kHz to 24.9kHz when the pump power tuned from 364mW to 460mW. The maximum pulse energy was 305.2nJ with the shortest pulse duration of 7.5μs under the pump power of 460mW.Both radial polarized and azimuthal polarized pulse output could be achieved by adjusting the polarization controllers. The purity of the cylindrical vector beam output was estimated to be over 95%.
Thermal effects are critical limit relevant to the power scaling of single crystalline fiber laser. In this paper, thermal effects in thin-rod single crystalline fiber are numerically researched. The simulation results show that thermal effects can be effectively reduced by enhancing the convective coefficient and decreasing the diameter of single crystalline fiber. For the most thin-rod single crystalline fibers utilized with diameter of 1 mm and length of 40 mm, the maximum heat load is only about 107 W due to the thermal rupture effect, which limits the laser output power to ~1 kW levels. The numerical results provide references for the developments and designing of thin-rod SCF laser
We report a lossless all-fiber 7x1 signal combiner, which can be used to combine more than 10 kW laser power. The measured power transmission efficiency is larger than 98.1% and power handle capability is more than 2 kilowatt (kW) for each port. When the combiner is put on a 20°C water cool plate, the average temperature rise is less than 3°C/kW. Due to the nearly lossless efficiency and good thermal performance, we can conclude that this combiner is capable of more than 10 kW power.
The design of annular doping region located in the cladding can reduce signal overlap with the doped region in order to reduce saturation and minimize gain compression, which has important applications in EDFAs. Here, we present the design and power scaling characterization of a cladding-pumped amplifier with ytterbium dopant located in an annular region near the ultra low NA core in the cladding, which is found to be a promising way to achieve multi-kilowatt single mode fiber lasers. The ultra low NA ensures that the fiber amplifiers operate in single mode state, which results to that the fiber amplifiers are free of the limitation of the transverse mode instability, and that the mode field of the signal laser extends into the cladding to extract gain amplification. The annular ytterbium-doped region located in the cladding can overcome the contradiction between high doping concentration and ultra-low NA design, which can simultaneously obtain high pump absorption with ultra low NA. The size of annular ytterbium-doped region under different core NA has been studied for various core sizes, which shows that the optimal size of annular ytterbium-doped region is related to the core NA and the core size. Detail analysis of high power amplification of cladding-ring-up-doped ultra low NA single mode fiber amplifier has been presented, which includes various nonlinear effects and thermal effects. It shows that, due to the specific design, the single mode characterization of the fiber is less influenced by the detrimental thermo-optic effect, which means that the cladding-annular-doped ultra-low NA fiber has high mode instability threshold than the ultra-low NA fiber with the core being fully uniformly doped. The cladding-pumped fiber amplifiers based on cladding-annular-doped ultra low NA fiber has the capability to achieve >10kW single mode fiber lasers.
We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it’s exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.