During microbolometer operation, the detector occasionally views high temperature scenes such as the sun or
flames at very close distance. The detector temperature can then increase to a level so high that the sensing material
experiences an annealing effect. Accordingly, the microbolometer is required to stand high temperatures that can cause
device damage.
In this paper, a bimorph leg integrated microbolometer structure is proposed. The bimorph leg is an extra leg that
is separated from the signal transfer legs. It is bent downward and snaps onto the substrate when the microbolometer's
temperature reaches a critical temperature. The temperature of the micro-bolometer is then decreased as heat is
transferred to the substrate.
By snapping the bimorph leg down onto the substrate, the microbolometer's thermal conductance is temporarily
increased roughly three-fold higher than that of the normal state and thermal damage to the bolometer material can be
effectively prevented. The increase of thermal conductance can be controlled by changing the size of the bimorph leg.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.