The Arcus Probe mission addresses a wide range of Astro2020 Decadal and NASA Science Mission Directorate Priority science areas, and is designed to explore astrophysical feedback across all mass scales. Arcus' three baseline science goals include: (i) Characterizing the drivers of accretion-powered feedback in supermassive black holes, (ii) Quantifying how feedback at all scales drives galaxy evolution and large-scale structure, including the tenuous cosmic web, and (iii) Analyzing stellar feedback from exoplanetary to galactic scales, including its effects on exoplanet environments targeted by current and future NASA missions. These science goals, along with a robust General Observer program, will be achieved using a mission that provides a high-sensitivity soft (10-60Å) X-ray spectrometer (XRS), working simultaneously with a co-aligned UV spectrometer (UVS; 970-1580Å). Arcus enables compelling baseline science and provides the broader astronomy community a revolutionary tool to characterize the full ionization range of warm and hot plasmas - including hydrogen, helium, and all abundant metals - in the Universe, from the halos of galaxies and clusters to the coronae of stars.
The Advanced X-ray Imaging Satellite (AXIS), a concept recently submitted to NASA’s Astrophysics Probe Explorer competition, will offer low-background, arcsecond-resolution imaging in the 0.3–10 keV band across a 450-arcmin2 field of view, with an effective area at 1 keV of at least 4200 cm2. AXIS will bring X-ray astronomy back to the forefront of modern mainstream astrophysics, reaching equivalent depths in X-rays to many of the major facilities of the 2030’s (e.g., JWST, Roman, Rubin, ngVLA, LISA) to address the most important questions identified by the Astro2020 Decadal Survey. Here, we present an update on the status of AXIS.
AXIS is a Probe-class mission concept that will provide high-throughput, high-spatial-resolution x-ray spectral imaging, enabling transformative studies of high-energy astrophysical phenomena. To take advantage of the advanced optics and avoid photon pile-up, the AXIS focal plane requires detectors with readout rates at least 20 times faster than previous soft x-ray imaging spectrometers flying aboard missions such as Chandra and Suzaku, while retaining the low noise, excellent spectral performance, and low power requirements of those instruments. We present the design of the AXIS high-speed x-ray camera, which baselines large-format MIT Lincoln Laboratory CCDs employing low-noise pJFET output amplifiers and a single-layer polysilicon gate structure that allows fast, low-power clocking. These detectors are combined with an integrated high-speed, low-noise ASIC readout chip from Stanford University that provides better performance than conventional discrete solutions at a fraction of their power consumption and footprint. Our complementary front-end electronics concept employs state of the art digital video waveform capture and advanced signal processing to deliver low noise at high speed. We review the current performance of this technology, highlighting recent improvements on prototype devices that achieve excellent noise characteristics at the required readout rate. We present measurements of the CCD spectral response across the AXIS energy band, augmenting lab measurements with detector simulations that help us understand sources of charge loss and evaluate the quality of the CCD backside passivation technique. We show that our technology is on a path that will meet our requirements and enable AXIS to achieve world-class science.
Arcus is a concept for a probe class mission to deliver high-resolution FUV and x-ray spectroscopy. For x-rays, it combines cost-effective Silicon Pore Optics (SPO) with high-throughput Critical-Angle Transmission (CAT) gratings to achieve R⪆ 3000 in a bandpass from 12-50 Å. We show in detail how the x-ray and the UV spectrographs (XRS and UVS) on Arcus will be aligned to each other. For XRS we present ray-tracing studies to derive performance characteristics such as the spectral resolving power and effective area, study the effect of misalignments on the performance, and conclude that most tolerances can be achieved with mechanical means alone. We also present an estimate of the expected on-orbit background.
The Advanced X-ray Imaging Satellite (AXIS) is a Probe-class concept that will build on the legacy of the Chandra x-ray Observatory by providing low-background, arcsecond-resolution in the 0.3-10 keV band across a 450 arcminute2 field of view, with an order of magnitude improvement in sensitivity. AXIS utilizes breakthroughs in the construction of lightweight segmented x-ray optics using single-crystal silicon, and developments in the fabrication of large-format, small-pixel, high readout rate CCD detectors with good spectral resolution, allowing a robust and cost-effective design. Further, AXIS will be responsive to target-of-opportunity alerts and, with onboard transient detection, will be a powerful facility for studying the time-varying x-ray universe, following on from the legacy of the Neil Gehrels (Swift) x-ray observatory that revolutionized studies of the transient x-ray Universe. In this paper, we present an overview of AXIS, highlighting the prime science objectives driving the AXIS concept and how the observatory design will achieve these objectives.
The x-ray and cryogenic facility is the baseline x-ray performance verification and calibration facility for the mirror demonstrator (MAMD), the qualification module (QM), and the flight module (FM) of the ATHENA ESA L-class mission. The ATHENA mirror will be the largest x-ray optic ever built, and due to its size and segmented nature it can only be partially illuminated during testing and calibration. Here we explore what this means for the method and procedure to align the mirror and obtain the effective area, point spread function, and focal length at the XRCF with raytracing and simulation. We will discuss the effects of gravity on such a large and heavy mirror, and investigate the challenge of stitching results together from different sectors due to sub-aperture illumination.
Supermassive black holes (SMBH) interact with gas in the interstellar and intergalactic media (ISM/IGM) in a process termed “feedback” that is key to the formation and evolution of galaxies and clusters. Characterizing the origins and physical mechanisms governing this feedback requires tracing the propagation of outflowing mass, energy and momentum from the vicinity of the SMBH out to megaparsec scales. Our ability to understand the interplay between feedback and structure evolution across multiple scales, as well as a wide range of other important astrophysical phenomena, depends on diagnostics only available in soft x-ray spectra (10-50 Å). Arcus combines high-resolution, efficient, lightweight x-ray gratings with silicon pore optics to provide R~2500 with an average effective area of ~200 cm2, an order of magnitude larger than the Chandra gratings. Flight-proven CCDs and instrument electronics are strong heritage components, while spacecraft and mission operations also reuse highly successful designs.
Arcus provides high-resolution soft X-ray spectroscopy in the 12-50 Å bandpass with unprecedented sensitivity, including spectral resolution < 2500 and effective area < 250 cm2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback, and (3) to explore how stars form and evolve. Arcus uses the same 12 m focal length grazing-incidence Silicon Pore X-ray Optics (SPOs) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. Combined with the high-heritage NGIS LEOStar-2 spacecraft and launched into 4:1 lunar resonant orbit, Arcus provides high sensitivity and high efficiency observing of a wide range of astrophysical sources.
Arcus, a Medium Explorer (MIDEX) mission, was selected by NASA for a Phase A study in August 2017. The observatory provides high-resolution soft X-ray spectroscopy in the 12-50 Å bandpass with unprecedented sensitivity: effective areas of >350 cm^2 and spectral resolution >2500 at the energies of O VII and O VIII for z=0-0.3. The Arcus key science goals are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. Arcus will be launched into an ~ 7 day 4:1 lunar resonance orbit, resulting in high observing efficiency, low particle background and a favorable thermal environment. Mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned. The baseline science mission will be completed in <2 years, although the margin on all consumables allows for 5+ years of operation.
Arcus, a Medium Explorer (MIDEX) mission, was selected by NASA for a Phase A study in August 2017. The observatory provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity: effective areas of >450 cm2 and spectral resolution >2500. The Arcus key science goals are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. Mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be capabilities to observe sources such as tidal disruption events or supernovae with a ~3 day turnaround. Following the 2nd year of operation, Arcus will transition to a proposal-driven guest observatory facility.
Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity – effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.
Arcus is a NASA/MIDEX mission under development in response to the anticipated 2016 call for proposals. It is a freeflying, soft X-ray grating spectrometer with the highest-ever spectral resolution in the 8-51 Å (0.24 – 1.55 keV) energy range. The Arcus bandpass includes the most sensitive tracers of diffuse million-degree gas: spectral lines from O VII and O VIII, H- and He-like lines of C, N, Ne and Mg, and unique density- and temperature-sensitive lines from Si and Fe ions. These capabilities enable an advance in our understanding of the formation and evolution of baryons in the Universe that is unachievable with any other present or planned observatory. The mission will address multiple key questions posed in the Decadal Survey1 and NASA’s 2013 Roadmap2: How do baryons cycle in and out of galaxies? How do black holes and stars influence their surroundings and the cosmic web via feedback? How do stars, circumstellar disks and exoplanet atmospheres form and evolve? Arcus data will answer these questions by leveraging recent developments in off-plane gratings and silicon pore optics to measure X-ray spectra at high resolution from a wide range of sources within and beyond the Milky Way. CCDs with strong Suzaku heritage combined with electronics based on the Swift mission will detect the dispersed X-rays. Arcus will support a broad astrophysical research program, and its superior resolution and sensitivity in soft X-rays will complement the forthcoming Athena calorimeter, which will have comparably high resolution above 2 keV.
NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.
ISS-Lobster is a wide-field X-ray transient detector proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 1.6x10-11 erg/(sec cm2) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars by supermassive black holes, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving stellar mass and possibly supermassive black holes. The mission includes a 3-axis gimbal system that allows fast Target of Opportunity pointing, and a small gamma-ray burst monitor. In this article we focus on ISS-Lobster measurements of X-ray counterparts of detections by the world-wide ground-based gravitational wave network.
We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. The mission requirements will be R>2500 and >600 cm2 of effective area at the crucial O VII and O VIII lines, values similar to the goals of the IXO X-ray Grating Spectrometer. The full bandpass will range from 8-52Å (0.25-1.5 keV), with an overall minimum resolution of 1300 and effective area >150 cm2. We will use the silicon pore optics developed at cosine Research and proposed for ESA’s Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs. This mission achieves key science goals of the New Worlds, New Horizons Decadal survey while making effective use of the International Space Station (ISS).
Recent advances in X-ray microcalorimeters enable a wide range of possible focal plane designs for the X-ray
Microcalorimeter Spectrometer (XMS) instrument on the future Advanced X-ray Spectroscopic Imaging Observatory
(AXSIO) or X-ray Astrophysics Probe (XAP). Small pixel designs (75 μm) oversample a 5-10″ PSF by a factor of 3-6
for a 10 m focal length, enabling observations at both high count rates and high energy resolution. Pixel designs utilizing
multiple absorbers attached to single transition-edge sensors can extend the focal plane to cover a significantly larger
field of view, albeit at a cost in maximum count rate and energy resolution. Optimizing the science return for a given
cost and/or complexity is therefore a non-trivial calculation that includes consideration of issues such as the mission
science drivers, likely targets, mirror size, and observing efficiency. We present a range of possible designs taking these
factors into account and their impacts on the science return of future large effective-area X-ray spectroscopic missions.
AXSIO’s two focal plane instruments (the imaging X-ray Microcalorimeter Spectrometer and the X-ray Grating
Spectrometer) will deliver a 100-fold increase in capability over the current generation of instruments for high-resolution
spectroscopy, microsecond spectroscopic timing, and high count rate capability. AXSIO covers the 0.1 - 12keV energy
range, complementing the capabilities of the next generation observatories such as ALMA, LSST, JWST, and 30-m
ground-based telescopes These instruments allow AXSIO to accomplish most of the IXO science goals at a significantly
reduced complexity and cost. These capabilities will enable studies of a broad range of scientific questions such as what
happens close to a black hole, how supermassive black holes grow, how large scale structure forms, and what are the
connections between these processes?
The 2010 Decadal Survey of Astronomy and Astrophysics found the science of the International X-ray Observatory (IXO) compelling, noting that “Large-aperture, time-resolved, high-resolution X-ray spectroscopy is required for future progress on all of these fronts, and this is what IXO can deliver.” In line with Decadal recommendations to reduce cost while maintaining core capabilities, we have developed the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO). AXSIO reduces IXO's six instruments to two fixed detectors - the imaging X-ray Microcalorimeter Spectrometer and the X-ray Grating Spectrometer. These instruments allow AXSIO to accomplish most of the IXO science goals at a significantly reduced complexity and cost. We present an overview of the AXSIO mission science drivers, its optics and instrumental capabilities, the status of its technology development programs, and the mission implementation approach.
The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO’s high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final Xray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.
In September 2011 NASA released a Request for Information on “Concepts for the Next NASA X-ray Astronomy
Mission” and formed a Community Science Team to help study the submitted concepts and evaluate their science return
relative to the goals identified by the 2010 Astrophysics Decadal Survey “New Worlds, New Horizons” report. After
reading the responses and participating in a community workshop, the team identified a number of candidate mission
concepts, including one combining advances in large-area precision optics with new X-ray microcalorimeter
technology. However, the exact mission requirements (effective area, field of view, point spread function, etc) were not
fixed. We will present a range of mission designs, describing the results of the NASA/GSFC Mission Design Lab study
of one possible mission along with available deltas that would increase capability or decrease cost.
NuSTAR is a hard X-ray satellite experiment to be launched in 2012. Two optics with 10.15 m focal length focus Xrays
with energies between 5 and 80 keV onto CdZnTe detectors located at the end of a deployable mast. The FM1 and
FM2 flight optics were built at the same time based on the same design and with very similar components, and thus the
performance of both is expected to be very similar. We provide an overview of calibration data that is being used to
build an optics response model for each optic and describe initial results for energies above 10 keV from the ground
calibration of the flight optics. From a preliminary analysis of the data, our current best determination of the overall
HPD of both the FM1 and FM2 flight optics is 52", and nearly independent of energy. The statistical error is negligible,
and a preliminary estimate of the systematic error is of order 4". The as-measured effective area and HPD meet the toplevel
NuSTAR mission sensitivity requirements.
Sensitive surveys of the X-ray universe have been limited to small areas of the sky due to the intrinsically
small field of view of Wolter-I X-ray optics, whose angular resolution degrades with the square of the off axis
angle. High angular resolution is needed to achieve a low background per source, minimize source confusion, and
distinguish point from extended objects. WFXT consists of three co-aligned wide field X-ray telescopes with a
1° field of view and a≲ 10" (goal of 5") angular resolution (HEW) over the full field. Total effective area at 1 keV
will be > 5000 cm2. WFXT will perform three surveys that will cover most of the extragalactic sky to 100-1000
times the sensitivity of the ROSAT All Sky Survey, ≳ 2000 deg2 to deep Chandra or XMM-Newton sensitivity,
and ≳ 100 deg2 to the deepest Chandra sensitivity. WFXT will generate a legacy X-ray data set of ≳ 5 x 105
clusters and groups of galaxies to z ~ 2, also characterizing the physics of the intracluster gas for a significant
fraction of them, thus providing an unprecedented data set for cosmological applications; it will detect > 107
AGN to z > 6, again obtaining spectra for a substantial fraction; it will detect > 105 normal/starburst galaxies;
and it will detect and characterize star formation regions across the Galaxy. WFXT is the only X-ray survey
mission that will match, in area and sensitivity, the next generation of wide-area optical, IR and radio surveys.
http://wfxt.pha.jhu.edu
The Wide Field X-Ray Telescope (WFXT) will carry out an unprecedented X-ray survey of galaxy clusters and groups, AGNs and QSOs, and galaxies. WFXT is a medium-class strategic mission that will address key questions in both Cosmic Origins and Physics of the Cosmos. WFXT will be orders of magnitude more effective than previous X-ray missions in performing surveys to a given limiting flux. The angular resolution of ~5" will be finer than provided by any currently planned large-area X-ray survey and highly efficient at discriminating AGNs and QSOs from extended emission from sources such as galaxies and clusters. The Burrows, Burg and Giacconi ideal optical solution gives an approximately constant angular resolution of 3-5 arc seconds across a field of 1-1.5 degrees diameter. A preliminary telescope design provides a resulting grasp an order of magnitude larger than current or future missions. We plan a combination of three surveys and, at each flux limit, WFXT will cover orders of magnitude more area than all previous and planned missions, with the deep 100 deg2 survey reaching the same flux limit as the deepest Chandra surveys to date. The WFXT mission addresses key cosmological and astrophysical science objectives including: the formation and evolution of clusters of galaxies with the associated cosmological and astrophysical implications; black hole formation and evolution; the interaction of black-hole driven AGNs with cluster and galaxy properties; and the high-energy stellar component and the hot ISM phase of galaxies WFXT is a mission for the entire astronomical community. The data from these surveys will be made readily available to the community in timely data releases to be used in a multitude of multi-waveband studies that will revolutionize astronomy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.