Metis, one of the instruments of the ESA mission Solar Orbiter (launched on 10 February 2020, from Cape Canaveral), is a coronagraph with 2 channels, capable of performing broadband polarization imaging in the visible range (580 to 640nm), and narrow-band imaging in UV (HI Lyman-α 121.6nm). It is equipped with two detectors based on CMOS APS sensors: the visible channel includes a custom CMOS sensor with direct illumination, while the UV channel is provided with an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single-stage Microchannel Plate intensifier coated with an opaque KBr photocathode and sealed with an entrance MgF2 window. Dark subtraction is a crucial step in the data reduction pipeline, thus requiring careful in-flight monitoring and characterization of the dark signal. Since it is not possible to directly acquire dark images with the visible detector, as the door of the instrument is not light-tight, an ad hoc procedure has been designed to estimate the correction to be applied. In the case of the UV detector, however, it is possible to acquire dark frames by turning off the intensifier. Due to small fluctuations occurring on the bias signal level even on short timescales, an algorithm has been developed to correct the dark matrix frame by frame.
Despite images of the solar corona in selected bands of the electromagnetic spectrum have been regularly acquired for years, several key questions on its physics and chemistry are unanswered. In order to properly undertake a comprehensive physical study of the solar corona, it is mandatory to investigate its emission lines. Several spectrometer have been investigating the solar corona over the solar disk. The only UV coronagraph/spectrometer flown so far, that has continuously observed the extended solar corona out of the solar disk (from 1.5 R⊙ to 5 R⊙), is UVCS (UltraViolet Coronagraph Spectrometer), operative from 1995 to 2009 aboard the SOHO (Solar and Heliospheric Observatory) mission. It was characterized by a 40 arcmin linear slit tangent to the solar limb, moved at different heliocentric heights by means of a tiltable mirror. Different polar angles were explored by rolling the whole instrument. Despite the milestone results it successfully provided, UVCS was not suited to follow the solar corona dynamics: coronal phenomena may evolve on times that range from minutes to hours, while a complete coronal spectrocopic map at full resolution took about 1 day for UVCS to be acquired. A circular slit with variable radius coupled with a grating having circular concentric grooves would reduce by at least 1 order of magnitude the time range needed for mapping the whole solar corona spectrum and would therefore be ideal for performing spectroscopical studies of the UV/EUV dynamics of the solar corona. CISS (CIrcular Slit Spectrometer), funded by the Italian National Institute for Astrophysics (INAF), is a project dedicated to the development of a prototype of a spectrometer with two innovative key features: a circular slit with variable radius and a grating with concentric circular grooves . A certain slit radius identifies a fixed heliocentric height: a radial spectrum of the whole corona at that height is then imaged onto the detector. By changing the slit radius, different heliocentric heights can be explored.
This work presents the prototype design and the status of the project.
Stellar in-flight calibration plays a pivotal role in improving the reliability of scientific data acquired by space optical instruments. Changes in sensitivity and performance of the image quality, caused by factors such as optical component degradation or misalignment, can be discovered and tracked by employing in-flight star images and comparing them with on-ground measurements. In this work, we introduce two simulation processes useful for this purpose and apply them to the Metis coronagraph aboard the ESA/NASA Solar Orbiter spacecraft. The first simulation process is a methodology for predicting star visibility in the Field of View (FoV) of the instrument. The second one improves the former code, integrating characteristics on the source, such as star magnitude, and the instrumental features, including reflectivity/transmission of the optical elements, and detector characteristics, e.g. bias, dark current,... The ultimate aim of the simulation is to generate an estimation of the intensity, in Digital Numbers, expected for each pixel of the detector, thus offering valuable insights into the instrument’s response to varying input flux conditions. This innovative approach will provide a comprehensive tool to anticipate and understand the coronagraph’s behavior in response to different celestial scenarios (e.g. from minimum to solar maximum conditions), contributing to more effective in-flight calibrations. Indeed, Metis operates in proximity to the Sun, in a challenging environment marked by high temperatures and significant temperature variations. Although the current results are preliminary, further work is needed to refine and fully understand the simulation outcomes.
Metis is a multi-wavelength coronagraph onboard the European Space Agency (ESA) Solar Orbiter mission. Thanks to the selected Solar Orbiter mission profile, for the first time the poles of the Sun and the circumsolar region will be seen and studied from a privileged point of view near the Sun (minimum distance 0.28 AU). Metis features an innovative instrument design conceived for simultaneously imaging the visible (580-640 nm) and ultraviolet (Lyman α at 121.6 nm) emission of the solar corona. METIS is an externally occulted coronagraph which adopts an “inverted occulted” configuration. The inverted external occulter (IEO) is a circular aperture after which a spherical mirror M0 rejects back the solar disk light, which exits the instrument through the IEO aperture itself. The passing coronal light is then collected by the METIS telescope. Common to both channels, the Gregorian on-axis telescope is centrally occulted and both the primary and the secondary mirrors have annular shape. The optical and radiometric performance of the telescope is strongly dependent on the huge degree of vignetting presented by the optical design. The internal fields are highly vignetted by M0 and further vignetted by the internal elements, such as the internal occulter and the Lyot stop, furthermore the presence of some spiders, needed to mount the internal elements, are vignetting even more, in some parts of the FoV, the light beams. During the instrument commissioning, in the visible light channel some out-of-focus sources have been imaged while moving in the Metis FoV. At a first glance, the out-of-focus images exhibit a very strange pattern. The pattern can be explained by taking into account the peculiar design of the Metis coronagraph instrument; in fact, the not fully illuminated pupil gives rise to “half moon” shape out-of-focus images with the spiders casting their shadow in different positions. In this work, the ray-tracing simulation results for the out-of-focus images are compared with some of the images taken in flight; some considerations relating the shape and dimension of the acquired images with the distance from Metis of the sources are also given.
On-board the Solar Orbiter ESA/NASA mission there is Metis, a coronagraph designed to study the solar corona by providing an artificial solar eclipse. Metis features two channels working at the ultraviolet Lyman-α (121.6 nm) and in the visible light (580-640 nm). On-ground, the Metis radiometric performance has been tested using a flat-field panel (uniform illumination); the stability of the performance can be verified in-flight through the analysis of the stars passing in the Metis Field of View. Care must be taken to ensure the quality of the calibration, both before launch and for the long period associated with the space mission lifetime. For this reason, we are carrying out long period research of stars that cross the Field of View of Metis. In this paper, we describe the vignetting function acquired: on-ground, simulated via a raytracing code and in-flight derived from on-ground measurements (performing some adjustments to account for the real Metis flight configuration). These vignetting functions are then compared with the vignetting data derived from the passage of the star Theta Ophiuchi in March and December 2021. Additional presentation content can be accessed on the supplemental content page.
After the 10th February 2020 launch (04:03 UTC), Solar Orbiter has recently begun its Nominal Mission Phase and is collecting imaging data as never seen before due to its peculiar orbit. The Metis coronagraph produces maps of the linearly polarized visible light corona in the wavelength band 580-640 nm and UV maps in the Lyman alpha H i 121.6 nm line. Metis is a coronagraph characterized by an innovative external occultation system that has a twofold function: reduce the thermal load and remove the diffraction due to the external occulter support. The positions of the entrance pupil (which is called Inverted External Occulter, IEO) and of the actual occulter are switched so that the pupil is the surface facing the solar disk and the occultation is performed by a spherical mirror, M0. M0 is positioned 800 mm behind IEO and reflects the disk light back through the IEO aperture. An Internal Occulter (IO) is conjugated to the IEO with respect to the primary mirror. IO is mounted on a motorized 2-axis stage that allows to perform in-flight fine adjustments to its position. During the on-ground calibration campaign the contribution of the stray light due to the diffraction from the IEO and scattering off the optics was measured. The measurement was carried out by using the OPSys facility in Torino (Italy), which is equipped with a clean environment and a source that simulates the solar disk divergence. A stray light measurement in flight is not trivial due to the presence of the solar corona. Nevertheless, an IO position optimization campaign has been conducted in order to reduce the stray light. A procedure was developed in order to minimize the stray light level on the instrument focal plane. This contribution reports on the procedure and on the results.
Metis is the coronagraph on board the Solar Orbiter ESA/NASA mission, it is designed to study the solar corona by providing an artificial solar eclipse. Metis features two channels: the ultraviolet H I (121.6 nm) and the visible light (580-640 nm). This work is focalised on the latter. Radiometric performances have been tested on-ground using a flatfield panel (uniform illumination), and the in-flight stability can be verified through the light reflected from the instrument door. When the Sun light impacts on the spacecraft shield, a fraction is reflected in the direction of the door, which then partly reflects it inside Metis. The analysis of the door images confirms its integrity and that of its subsequent optical components, since the reflected intensity follows as expected a 1/r2 law, r being the Sun-spacecraft distance. Further analysis is being performed on such images to verify the operating status of various elements of Metis. Complementary ray-tracing simulation studies on the door retro-reflectivity properties are also in progress.
Metis is a multi-wavelength coronagraph onboard the European Space Agency (ESA) Solar Orbiter mission. The instrument features an innovative instrument design conceived for simultaneously imaging the Sun's corona in the visible and ultraviolet range. The Metis visible channel employs broad-band, polarized imaging of the visible K-corona, while the UV one uses narrow-band imaging at the HI Ly , i.e. 121.6 nm. During the commissioning different acquisitions and activities, performed with both the Metis channels, have been carried out with the aim to check the functioning and the performance of the instrument. In particular, specific observations of stars have been devised to assess the optical alignment of the telescope and to derive the instrument optical parameters such as focal length, PSF and possibly check the optical distortion and the vignetting function. In this paper, the preliminary results obtained for the PSF of both channels and the determination of the scale for the visible channel will be described and discussed. The in-flight obtained data will be compared to those obtained on-ground during the calibration campaign.
Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. This work presents the embedded Metis coronagraph and its on-ground calibration in the 580-640 nm wavelength range using a flat field panel. It provides a uniform illumination to evaluate the response of each pixel of the detector; and to characterize the Field of View (FoV) of the coronagraph. Different images with different exposure times were acquired during the on-ground calibration campaign. They were analyzed to verify the linearity response of the instrument and the requirements for the FoV: the maximum area of the sky that Metis can acquire.
Solar Orbiter is a solar mission that will approach the Sun down to a minimum perihelion of 0.28 AU and will increase its orbit inclination with respect to the ecliptic up to a maximum angle of 34 deg. For imagers aboard Solar Orbiter there will be three 10-days remote sensing windows per orbit. Observations shall be carefully planned at least 6 months in advance. The Multi Instrument Sequence Organizer (MISO) is a web based platform developed by the SPICE group and made available to support Solar Orbiter instruments teams in planning observations by assembling Mission Database sequences. Metis is the UV and visible light coronagraph aboard Solar Orbiter. Metis is a complex instrument characterized by a rich variety of observing modes, which required a careful commissioning activity and will need support for potential maintenance operations throughout the mission. In order to support commissioning and maintenance activities, the Metis team developed a PDOR (Payload Direct Operation Request) and MDOR (Memory Direct Operation Request) module integrated in MISO and made available to all Solar Orbiter instruments. An effort was made in order to interpret the coding philosophy of the main project and to make the additional module as homogeneous as possible both to the web interface and to the algorithm logic, while integrating characteristics which are peculiar to PDORs and MDORs. An user friendly web based interface allows the operator to build the operation request and to successively modify or integrate it with further or alternative information. In the present work we describe the PDOR/MDOR module for MISO by addressing its logic and main characteristics.
Metis is a solar coronagraph mounted on-board the Solar Orbiter ESA spacecraft. Solar Orbiter is scheduled for launch in February 2020 and it is dedicated to study the solar and heliospheric physics from a privileged close and inclined orbit around the Sun. Perihelion passages with a minimum distance of 0.28 AU are foreseen.
Metis features two channels to image the solar corona in two different spectral bands: in the HI Lyman ∝ at 121.6 nm, and in the polarized visible light band (580 – 640 nm). Metis is a solar coronagraph adopting an “inverted occulted” configuration. The inverted external occulter (IEO) is a circular aperture followed by a spherical mirror which back rejects the disk light. The reflected disk light exits the instrument through the IEO aperture itself, while the passing coronal light is collected by the Metis telescope. Common to both channels, the Gregorian on-axis telescope is centrally occulted and both the primary and the secondary mirror have annular shape.
Classic alignment methods adopted for on-axis telescope cannot be used, since the on-axis field is not available. A novel and ad hoc alignment set-up has been developed for the telescope alignment.
An auxiliary visible optical ground support equipment source has been conceived for the telescope alignment. It is made up by four collimated beams inclined and dimensioned to illuminate different sections of the annular primary mirror without being vignetted by other optical or mechanical elements of the instrument.
The Solar Orbiter/Metis visible and UV solar coronagraph redefines the concept of external occultation in solar coronagraphy. Classical externally occulted coronagraphs are characterized by an occulter in front of the telescope entrance aperture. Solar Orbiter will approach the Sun down to 0.28 AU: in order to reduce the thermal load, the Metis design switches the positions of the entrance aperture and the external occulter thus achieving what is called the inverted external occultation. The inverted external occulter (IEO) consists of a circular aperture on the Solar Orbiter thermal shield that acts as coronagraph entrance pupil. A spherical mirror, located 800 mm behind the IEO, back rejects the disklight through the IEO itself. To pursue the goal of maximizing the reduction of the stray light level on the focal plane, an optimization of the IEO shape was implemented.
The stray light calibration was performed in a clean environment in front of the OPSys solar disk divergence simulator (at ALTEC, in Torino, Italy), which is able to emulate different heliocentric distances. Ground calibrations were a unique opportunity to map the Metis stray light level thanks to a pure solar disk simulator without the solar corona. The stray light calibration was limited to the visible light case, being the most stringent. This work is focused on the description of the laboratory facility that was used to perform the stray light calibration and on the calibration results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.