This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Metis features two channels to image the solar corona in two different spectral bands: in the HI Lyman ∝ at 121.6 nm, and in the polarized visible light band (580 – 640 nm). Metis is a solar coronagraph adopting an “inverted occulted” configuration. The inverted external occulter (IEO) is a circular aperture followed by a spherical mirror which back rejects the disk light. The reflected disk light exits the instrument through the IEO aperture itself, while the passing coronal light is collected by the Metis telescope. Common to both channels, the Gregorian on-axis telescope is centrally occulted and both the primary and the secondary mirror have annular shape.
Classic alignment methods adopted for on-axis telescope cannot be used, since the on-axis field is not available. A novel and ad hoc alignment set-up has been developed for the telescope alignment.
An auxiliary visible optical ground support equipment source has been conceived for the telescope alignment. It is made up by four collimated beams inclined and dimensioned to illuminate different sections of the annular primary mirror without being vignetted by other optical or mechanical elements of the instrument.
Several metrology systems have been implemented in order to keep the formation-flying configuration. Among them, the Shadow Position Sensors (SPSs) assembly. The SPSs are designed to verify the sun-pointing alignment between the Coronagraph pupil entrance centre and the umbra cone generated by the Occulter Disk. The accurate alignment between the spacecrafts is required for observations of the solar corona as much close to the limb as 1.05 RΘ.The metrological system based on the SPSs is composed of two sets of four micro arrays of Silicon Photomultipliers (SiPMs) located on the coronagraph pupil plane and acquiring data related to the intensity of the penumbra illumination level to retrieve the spacecrafts relative position. We developed and tested a dedicated algorithm for retrieving the satellites position with respect to the Sun. Starting from the measurements of the penumbra profile in four different spots and applying a suitable logic, the algorithm evaluates the spacecraft tri-dimensional relative position. In particular, during the observational phase, when the two satellites will be at 150 meters of distance, the algorithm will compute the relative position around the ideal aligned position with an accuracy of 500μm within the lateral plane and 500 mm for the longitudinal measurement. This work describes the formation flying algorithm based on the SPS measurements. In particular, the implementation logic and the formulae are described together with the results of the algorithm testing.
The entire alignment and verification phase has been performed by the Metis team in collaboration with Thales Alenia Space Torino and took place in ALTEC (Turin) at the Optical Payload System Facility using the Space Optics Calibration Chamber infrastructure, a vacuum chamber especially built and tested for the alignment and calibration of the Metis coronagraph, and suitable for tests of future payloads.
The goal of the alignment, integration, verification and calibration processes is to measure the parameters of the telescope, and the characteristics of the two Metis channels: visible and ultraviolet. They work in parallel thanks to the peculiar optical layout. The focusing and alignment performance of the two channels must be well understood, and the results need to be easily compared to the requirements. For this, a dedicated illumination method, with both channels fed by the same source, has been developed; and a procedure to perform a simultaneous through focus analysis has been adopted.
In this paper the final optical performance achieved by Metis is reported and commented.
The stray light calibration was performed in a clean environment in front of the OPSys solar disk divergence simulator (at ALTEC, in Torino, Italy), which is able to emulate different heliocentric distances. Ground calibrations were a unique opportunity to map the Metis stray light level thanks to a pure solar disk simulator without the solar corona. The stray light calibration was limited to the visible light case, being the most stringent. This work is focused on the description of the laboratory facility that was used to perform the stray light calibration and on the calibration results.
View contact details
No SPIE Account? Create one