Retrospective kV x-ray 4DCT treatment planning for lung cancer MV linac treatment is becoming a standard-of-care for this widely used procedure for the largest cancer cause-of-death in the US. It currently provides the best estimate of a fixed-in-time but undulating and closed 3D "shell" to which a minimum curative-intent radiation dose should be delivered to provide the best estimated patient survival and the least morbidity, usually characterized by quantitative dose-volume-histograms (DVHs). Unfortunately this closed shell volume or internal target volume (ITV) currently has to be increased enough to enclose the full range of respiratory lesion motion (plus set-up etc. uncertainties) which cannot yet be accurately determined in real time during treatment delivery. With accurate motion-tracking, the planning target volume (PTV) or outer “shell” may be reduced by up to 40%. However there is no single 2D plane that precisely follows the reduced-PTV-volume’s 3D respiratory motion, currently best estimated by the retrospective hand contouring by a trained and experienced MD radiation oncology MD using the full 3D-time information of 4DCT. Once available, 3D motion tracking in real time has the potential to substantially decrease DVH doses to surrounding organs-at-risk (OARs), while maintaining or raising the curative-intent dose to the lesion itself. The assertion argued here is that, the 3D volume-rendered imaging of lung cancer lesion-trajectories in real-time from TumoTrak digital x-ray tomosythesis, has the potential to provide more accurate 3D motion tracking and improved dose delivery at lower cost than the real time, 2D single slice imaging of MRI-guided radiotherapy.
The combinations of a 60 fps kV x-ray flat panel imager, a 19 focal spot kV x-ray tube enabled by a steered electron beam, plus SART or SIRT sliding reconstruction via GPUs, allow real time 6 fps 3D-rendered digital tomosynthesis tracking of the respiratory motion of lung cancer lesions. The tube consists of a “U” shaped vacuum chamber with 19 tungsten anodes, spread uniformly over 3 sides of a 30 cm x 30 cm square, each attached to a cylindrical copper heat sink cooled by flowing water. The beam from an electron gun was steered and focused onto each of the 19 anodes in a predetermined sequence by a series of dipole, quadrupole and solenoid magnets. The imager consists of 0.194 mm pixels laid out in 1576 rows by 2048 columns, binned 4x4 to achieve 60 fps projection image operation with 16 bits dynamic range. These are intended for application with free breathing patients during ordinary linac C-arm radiotherapy with modest modifications to typical system hardware or to standard clinical treatment delivery protocols. The sliding digital tomosynthesis reconstruction is completed after every 10 projection images acquired at 60 fps, but using the last 19 such projection images for each such reconstruction at less than 8 mAs exposure per 3D rendered frame. Comparisons, to “ground truth” optical imaging and to diagnostic 4D CT (10 phase) images, are being used to determine the accuracy and limitations of the various versions of this new “19 projection image x-ray tomosynthesis fluorooscopy” motion tracking technique.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.