With the adoption of extreme ultraviolet (EUV) lithography for high-volume production of advanced nodes, stochastic variability and resulting failures, both post litho and post etch, have drawn increasing attention. There is a strong need for accurate models for stochastic edge placement error (SEPE) with a direct link to the induced stochastic failure probability (FP). Additionally, to prevent stochastic failure from occurring on wafers, a holistic stochastic-aware computational lithography suite of products is needed, such as stochastic-aware mask source optimization (SMO), stochastic-aware optical proximity correction (OPC), stochastic-aware lithography manufacturability check (LMC), and stochastic-aware process optimization and characterization. In this paper, we will present a framework to model both SEPE and FP. This approach allows us to study the correlation between SEPE and FP systematically and paves the way to directly correlate SEPE and FP. Additionally, this paper will demonstrate that such a stochastic model can be used to optimize source and mask to significantly reduce SEPE, minimize FP, and improve stochastic-aware process window. The paper will also propose a flow to integrate the stochastic model in OPC to enhance the stochastic-aware process window and EUV manufacturability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.