KEYWORDS: Silicon, Germanium, Interfaces, Multijunction solar cells, Photovoltaics, Electrochemical etching, Transmission electron microscopy, Chemical mechanical planarization, Solar cells
III-V solar cell cost reduction and direct III-V/Si integration can both be realized by depositing a thin layer of high-quality Ge on relatively low-cost Si substrates. However, direct epitaxial growth of Ge on Si substrates is difficult due to the 4% lattice mismatch between the film and the substrate. Threading dislocations (TDs) introduced within the Ge layer have a detrimental effect on device performances. The goal of this research is to address the perennial need to minimize the defect density of Ge epilayers grown on a Si substrate. We seek to accommodate the effects of the lattice mismatch by introducing a porous Si interface layer to intercept dislocations and prevent them from reaching the active layers of the device. The porous Si layer is formed through dislocation-selective electrochemical deep etching and thermal annealing. The porous layer created beneath the top Ge layer can both act as dislocation traps and as a soft compliant substrate, which displays high flexibility. Transmission electron microscopy (TEM) analysis of the Ge/porous Si interface shows that the lattice mismatch strain of the Ge films was almost relaxed. The surface roughness of this modified Ge/Si substrate has been reduced using chemical mechanical polishing (CMP) process to fulfil the requirements for epitaxy of III-V alloys. Finally, we present simulation results exploring the effect of threading dislocations on device performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.