This research introduces arrays of actionable microelectromechanical systems Fabry-Perot pixels designed for adaptive photolithography. To the authors' knowledge, this is the first demonstration of Fabry-Perot interferometry in the field of optical masks. Each individual pixel functions to either permit or block light transmission by utilizing constructive or destructive interferences facilitated by the Fabry-Perot effect. Through electrostatic actuation, the optical path is modified, primarily by modulating the air gap of the Fabry-Perot pixel. This adjustment yields a transmission contrast exceeding 35%, with the maximum and minimum transmission levels observed at 100% and 64%, respectively. The change in transmission correlates with a variation in the air gap by 140nm. These findings illustrate the fundamental principle behind a reprogrammable Fabry-Perot photomask, showcasing its ability to modulate the transmission of ultraviolet light essential in photolithography processes.
In the strong light-matter interaction regime, quantum vacuum field effects on coupled hybrid states are highly enhanced. One building block of such hybrid quantum system is a plasmonic nanocavity coupled with quantum emitters in the strong coupling (SC) limit and further. Here, we design and fabricate a low-mode volume plasmonic cavity and observe plasmon resonances in the visible range, based on the nanoparticle over mirror (NPoM) array structure. We show spectral tunability of this resonance with the nanostructure dimensions, and good agreement between optical characterization and numerical simulations by FDTD.
Point-of-care tests (POCT) are important for detecting illnesses and monitoring patients without the need of a medical laboratory. To be useful, POCT must be sensitive, specific, integrated, and affordable. Since the early 2000s, integrated photonics have offered a possible solution for this problem. In particular, silicon micro-ring resonators represent a compact and sensitive choice known in the industry. This paper details the design, fabrication, and characterization of two methods for improving the performance of ring resonators by engineering their cross section. More precisely, improving devices made out of silicon nitride in an industrial environment to work in the infrared (around 1.31 µm).
The first approach is to selectively excite the first order mode of the ring resonator’s waveguide. The first order mode, with its greater exposure to the sensing liquid than the fundamental mode, results in a higher device sensitivity. The second method consists in coupling a dielectric mode with a surface plasmon polariton (SPP) forming a hybrid plasmonic waveguide. Hybrid plasmonic waveguides combine the low losses of the dielectric mode with the high sensitivity of the SPP, which increases the sensitivity in comparison to conventional dielectric ring resonators. Furthermore, hybrid plasmonic micro-ring resonators make possible a stable and easy differential functionalization.
Through the optical characterization of the devices, this study shows an experimental sensitivity of first order ring resonators of over 200 nm/RIU* and of hybrid plasmonic devices of 300 nm/RIU*. This demonstrates improvement with respect to the reference silicon nitride dielectric ring (120 nm/RIU*). Characterizations were performed using a PolyDiMethylSiloxane (PDMS) fluidic system to prove the compatibility of the substrate to POCT applications.
This paper shows two alternative approaches to integrated nano-photonic sensing for point of care testing. The proposed structures, demonstrate not only a higher sensitivity, but consider selectivity and manufacturing issues, which are fundamental for POCT development.
*RIU = Refractive Index Unit
KEYWORDS: Silicon, Germanium, Interfaces, Multijunction solar cells, Photovoltaics, Electrochemical etching, Transmission electron microscopy, Chemical mechanical planarization, Solar cells
III-V solar cell cost reduction and direct III-V/Si integration can both be realized by depositing a thin layer of high-quality Ge on relatively low-cost Si substrates. However, direct epitaxial growth of Ge on Si substrates is difficult due to the 4% lattice mismatch between the film and the substrate. Threading dislocations (TDs) introduced within the Ge layer have a detrimental effect on device performances. The goal of this research is to address the perennial need to minimize the defect density of Ge epilayers grown on a Si substrate. We seek to accommodate the effects of the lattice mismatch by introducing a porous Si interface layer to intercept dislocations and prevent them from reaching the active layers of the device. The porous Si layer is formed through dislocation-selective electrochemical deep etching and thermal annealing. The porous layer created beneath the top Ge layer can both act as dislocation traps and as a soft compliant substrate, which displays high flexibility. Transmission electron microscopy (TEM) analysis of the Ge/porous Si interface shows that the lattice mismatch strain of the Ge films was almost relaxed. The surface roughness of this modified Ge/Si substrate has been reduced using chemical mechanical polishing (CMP) process to fulfil the requirements for epitaxy of III-V alloys. Finally, we present simulation results exploring the effect of threading dislocations on device performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.