This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Apart from these programs, the development of scientific missions is increasing. In particular, for the last 5 years, Sofradir and CEA-LETI have worked on specific detectors in SWIR bands to address these needs. The ALFA detector development in progress is the result of these developments. It is expected to propose the first generation of this detector in 2019 for upcoming scientific mission and / or ground universe exploration.
In this paper, an overview of space activity at Sofradir with the main space programs and developments will be described, followed by a description of very large detector developments made for science.
Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.
In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range – the long wave detector of the ISOCAM camera onboard ISO – as well as in the far infrared range – the bolometer arrays of the Herschel/PACS photometer unit –, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France).
Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons – increase the number of available vendors, decrease the cost, mitigate possible export regulations, …– as well as political ones – spend european money in Europe –, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe.
The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations.
One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon noise, as the detector operating temperature has a very strong impact at system level. A consequence of reaching low levels of dark current is the need for very low noise readout circuits.
CEA and SOFRADIR are involved in a number of activities that have already started in this framework. CEA/LETI does the development of the photo-voltaic (PV) layers – MCT material growth, diode technologies–, as well as some electro-optical characterisation at wafer, diode and hybrid component levels, and CEA/IRFU/SAp does all the electro-optical characterisation involving very low flux measurements (mostly dark current measurements). Depending of the program, SOFRADIR can also participate in the development of the hybrid components, for instance the very low noise readout circuits (ROIC) can be developed either at SOFRADIR or at CEA/LETI.
Depending of the component specifications, the MCT epitaxy can be either liquid phase (LPE, which is the standard at SOFRADIR for production purposes) or molecular beam (MBE), the diode technology can be n/p (standard at LETI and SOFRADIR) or p/n (under development for several years now) [3], and the input stage of the ROIC can be Source Follower per Detector (SFD for very low flux low noise programs) or Capacitive Trans Impedance Amplifier (CTIA for intermediate flux programs) [4].
This paper will present the different developments and results obtained so far in the two NIR-SWIR and MWIR-LWIR spectral ranges, as well as the perspectives for the near future. CEA/LETI is also involved in the development of MCT Avalanche Photo Diodes (APD) that will be discussed in other papers [5,6].
View contact details
No SPIE Account? Create one