This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The Fraunhofer-Institute for Production Technology IPT develops, together with their partners Phix and Aixemtec, new handling and assembly tools, as well as processes as one of the leading companies in this field. In the self-developed assembly cell, the fiber handling tool-head operations automatically to pick up, manipulate and tack single fibers to a glass plate or fiber to chip. Each fiber is moved by a portal robot within the assembly cell with micrometer accuracy but also can be rotated with a repetition accuracy less than 0.01°. Advanced illumination units observation techniques allow to package fibers arrays much quicker and more robust than before. Therefore, additional camera systems and material characteristics are used to develop smart alignment routines. As a result, the observation of the orientation of the PM-fiber core as well as the fiber layout during the assembly process leads to high quality products within fast production cycles. Due to the flexible construction of the assembly call also PIC packaging and fiber-to-chip coupling is possible.
In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored.
Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT’s mounting station with a precision of ±1 micron.
Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation.
Fraunhofer IPT’s department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.
View contact details
No SPIE Account? Create one