We present the design and performance of the XRISM Soft X-Ray Spectrometer Resolve, successfully launched on a JAXA H-IIA rocket September 7, 2023. The instrument uses a 36-pixel array of microcalorimeters at the focus of a grazing-incidence x-ray mirror. The instrument has achieved an energy resolution of 4.5 eV (FWHM) at 6. The overall cooling chain was designed to provide a lifetime of at least 3 years in orbit and operate without liquid helium to provide redundancy and the longest operational lifetime for the instrument. Early indications that the cryogen lifetime will exceed 4 years. X-rays are focused onto the array with a high-throughput grazing incidence X-ray Mirror Assembly with over 200 nested two-stage X-ray reflectors. A series of onboard X-ray calibrations sources allow simultaneous energy scale calibration lines simultaneously while observing celestial sources. The inflight performance of Resolve will be described along with a summary of the scientific capabilities.
The initial on-orbit checkout of the soft X-ray spectroscopic system on board the XRISM satellite is summarized. The satellite was launched on September 6, 2023 (UT) and has been undergoing initial checkout since then. Immediately after the launch, the cryocoolers were turned on and their operation was established. The first cycle of the adiabatic demagnetization refrigerator was performed on Oct. 9th, 2023, to transition the sensor to steady-state operational temperature conditions. Subsequently, the filter wheel, which supports energy calibration, was started up. The energy scale is highly sensitive to the temperature environment around the sensor and its analog electronics. The gain correction was established by referring to the calibration X-ray line. For an optimization of the cooler frequencies, we took data including the noise spectra by scanning the cooler frequencies, and selected a good frequency pair in the on-orbit environment. At the last stage of the checkout, the gate valve, which protects the inside of the Dewar from outside air pressure at launch, was attempted to be opened to bring the system to a state where it is ready for regular operations but was failed.
The X-Ray Imaging and Spectroscopy Mission (XRISM) project at JAXA officially started in 2018. Following the development of onboard components, the proto-flight test was conducted from 2021 to 2023 at JAXA Tsukuba Space Center. The spacecraft was launched from JAXA Tanegashima Space Center on September 7, 2023 (JST), and onboard components, including the science instruments, were activated during the in-orbit commissioning phase. Following the previous report in 2020, we report the spacecraft ground tests, the launch operation, in-orbit operations, and the status and plan of initial and subsequent guest observations.
The X-Ray Imaging and Spectroscopy Mission (XRISM) is a collaborative mission between the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA), with the participation of the European Space Agency (ESA). This mission is designed to investigate celestial X-ray objects in the Universe with high-throughput imaging and high-resolution spectroscopy, using its Xtend and Resolve instruments. The satellite was successfully launched from Japan in September 2023. The ground-based calibration of the X-ray Mirror Assemblies (XMAs) for both instruments onboard the XRISM satellite was performed at several facilities, almost exclusively at NASA’s Goddard Space Flight Center. A raytracing simulator (xrtraytrace) has been developed by the Hitomi and XRISM teams, and its XRISM model input files have been tuned to reproduce the calibration data. In this paper, we first present the various ground-calibration measurements. We then explain the analyses of the data resulting from these measurements. Next, we show how we used the products of these analyses to tune the simulator parameters in order to match the calibration measurements. Finally, we show a comparison of the simulated results with the measured effective areas, vignetting curves, and point spread functions. We found that the on-axis effective area measurements and the raytracing results are consistent within 6% in the nominal energy band, and the off-axis effective areas at 6.4 keV agree within 5% for Resolve-XMA (up to 5′) and within 8% for Xtend-XMA (up to 20′). Furthermore, the tuned raytracing simulator allows the on-axis PSF to be reproduced with less than 40% accuracy for both XMAs (at 1.5, 6.4 and 9.4 keV).
The in-orbit performance verification and calibration of the X-ray Mirror Assembly (XMA) on the XRISM satellite are ongoing. The optical performance of the XMA is being measured with bright point-like or bright small enough sources in orbit. This paper reports the preliminary results for the XMA of Resolve (Resolve- XMA). The in-orbit on-axis and off-axis (1.8′–9′ away from the aimpoint) Point Spread Function (PSF) of the Resolve-XMA were measured using 3C 273 and Cyg X-2, respectively. No significant changes were found in the PSF compared to on-ground results, indicating that the Resolve-XMA is functioning as expected (HPD ∼ 1.3′). For the Effective Area (EA) calibration, XRISM observed 3C 273 alongside other satellites. The Resolve spectrum of 3C 273 is well reproduced by an absorbed power law. While the best-fit photon index is consistent with that measured by NuSTAR, the flux is 5% higher than the NuSTAR measurement. In-orbit stray light observation was conducted with Crab at 60′ off from the aimpoint, and a signature of stray light on Resolve was detected. The observation of Resolve optical search has not yet been performed, and GX 3+1 has been proposed as the target.
XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
Resolve is the instrument that utilizes an X-ray micro-calorimeter array onboard the XRISM (X-Ray Imaging and Spectroscopy Mission), which was launched on September 6 (UT), 2023. It fully met the spectral performance requirement (7 eV at 6 keV) both on the ground and in orbit and was confirmed to have the same performance as the SXS onboard the ASTRO-H (Hitomi) satellite. The detectors are operated at a low temperature of 50 mK to achieve the required energy resolution with the cooling system to satisfy the lifetime requirement of over 3 years. The cooling system is equipped with a 3-stage ADR and superfluid liquid He (LHe) as the heat sink for the ADR. The Joule-Thomson cooler unit and 2-stage Stirling cooler units are adopted to reduce heat load to the LHe. In the pre-launch operations, we carried out the low-temperature LHe top-off operation. The resultant amount of liquid He was over 35 L at the launch, which is sufficient to meet the lifetime requirement. During the post-launch operation, the LHe vent valve was opened five minutes after launch during the rocket acceleration, and the cryocoolers started in several revolutions as planned which established stable cooling of the dewar.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.